Access and print 'Name' Field from NumPy Structured array
NumPy: Structured Arrays Exercise-2 with Solution
Accessing Specific Fields:
Write a NumPy program that accesses and prints all values of the 'Name' field from the structured array created in exercise.
Sample Solution:
Python Code:
import numpy as np
# Define the data type for the structured array
dtype = [('name', 'U10'), ('age', 'i4'), ('height', 'f4')]
# Create the structured array with sample data
structured_array = np.array([
('Lehi Piero', 25, 5.5),
('Albin Achan', 30, 5.8),
('Zerach Hava', 35, 6.1),
('Edmund Tereza', 40, 5.9),
('Laura Felinus', 28, 5.7)
], dtype=dtype)
# Access and print all values of the 'name' field
# Access the 'name' field from the structured array
name_field_values = structured_array['name']
# Print all values of the 'name' field
print("All values of the 'name' field:")
print(name_field_values)
Output:
All values of the 'name' field: ['Lehi Piero' 'Albin Acha' 'Zerach Hav' 'Edmund Ter' 'Laura Feli']
Explanation:
- Import Libraries:
- Imported numpy as "np" for array creation and manipulation.
- Define Data Type:
- Define the data type for the structured array using a list of tuples. Each tuple specifies a field name and its corresponding data type. The data types are:
- 'U10' for a string of up to 10 characters.
- 'i4' for a 4-byte integer.
- 'f4' for a 4-byte float.
- Create Structured Array:
- Created the structured array using np.array(), providing sample data for five individuals. Each individual is represented as a tuple with values for 'name', 'age', and 'height'.
- Access and Print 'Name' Field Values:
- Access the 'name' field from the structured array using structured_array['name'].
- Print all values of the 'name' field.
Python-Numpy Code Editor:
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics