Flattening a 3x3x3 array to a 1D array using NumPy
Write a NumPy program to create a 3x3x3 array with random values and flatten it to a 1D array.
This task involves generating a 3x3x3 array filled with random values using NumPy and then flattening it into a 1D array. Flattening an array is a common operation in data processing, converting a multi-dimensional array into a single-dimensional array for easier manipulation and analysis.
Sample Solution:
Python Code:
# Importing the necessary NumPy library
import numpy as np
# Create a 3x3x3 array with random values
array = np.random.rand(3, 3, 3)
# Flatten the 3D array to a 1D array
flattened_array = array.flatten()
# Printing the 3D array and its flattened version
print("3x3x3 Array:\n", array)
print("Flattened 1D Array:\n", flattened_array)
Output:
3x3x3 Array: [[[0.60776127 0.85659619 0.90421646] [0.01376209 0.45704237 0.29651364] [0.83378199 0.79445351 0.05627497]] [[0.93562363 0.08483905 0.96325464] [0.6470311 0.20171087 0.37910202] [0.82161452 0.69174066 0.97312358]] [[0.52205353 0.38419799 0.17200811] [0.04389473 0.49328105 0.47868007] [0.30365635 0.94884667 0.74666266]]] Flattened 1D Array: [0.60776127 0.85659619 0.90421646 0.01376209 0.45704237 0.29651364 0.83378199 0.79445351 0.05627497 0.93562363 0.08483905 0.96325464 0.6470311 0.20171087 0.37910202 0.82161452 0.69174066 0.97312358 0.52205353 0.38419799 0.17200811 0.04389473 0.49328105 0.47868007 0.30365635 0.94884667 0.74666266]
Explanation:
- Import NumPy library: This step imports the NumPy library, which is essential for numerical operations.
- Create a 3x3x3 array: We use np.random.rand(3, 3, 3) to generate a 3D array with random values between 0 and 1.
- Flatten the 3D array to a 1D array: The array.flatten() function transforms the 3D array into a 1D array.
- Print results: This step prints the original 3D array and its flattened 1D version.
Python-Numpy Code Editor:
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics