Create a Masked array and count Masked elements in NumPy
NumPy: Masked Arrays Exercise-6 with Solution
Write a NumPy program to create a masked array and count the number of masked elements.
Sample Solution:
Python Code:
import numpy as np # Import NumPy library
# Create a regular NumPy array with some values
data = np.array([1, 2, np.nan, 4, 5, np.nan, 7, 8, 9, 10])
# Create a mask to specify which values to mask (e.g., NaN values)
mask = np.isnan(data)
# Create a masked array using the regular array and the mask
masked_array = np.ma.masked_array(data, mask=mask)
# Count the number of masked elements in the masked array
num_masked_elements = np.ma.count_masked(masked_array)
# Print the original array, the masked array, and the number of masked elements
print("Original Array:")
print(data)
print("\nMasked Array:")
print(masked_array)
print("\nNumber of Masked Elements:")
print(num_masked_elements)
Output:
Original Array: [ 1. 2. nan 4. 5. nan 7. 8. 9. 10.] Masked Array: [1.0 2.0 -- 4.0 5.0 -- 7.0 8.0 9.0 10.0] Number of Masked Elements: 2
Explanation:
- Import NumPy Library:
- Import the NumPy library to handle array operations.
- Create a Regular Array:
- Define a NumPy array with integer values and include some NaN values to be masked.
- Define the Mask:
- Create a Boolean mask array where True indicates the values to be masked (e.g., NaN values).
- Create the Masked Array:
- Use "np.ma.masked_array()" to create a masked array from the regular array and the mask.
- Count Masked Elements:
- Use “np.ma.count_masked()” to count the number of masked elements in the masked array.
- Finally print the original array, the masked array, and the number of masked elements to verify the operation.
Python-Numpy Code Editor:
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics