Create array using np.where based on condition in NumPy
NumPy: Universal Functions Exercise-6 with Solution
Using ufuncs with Conditions:
Write a NumPy program that uses the np.where ufunc to create a new array from two existing arrays based on a condition applied to a third array.
Sample Solution:
Python Code:
import numpy as np
# Create three 1D NumPy arrays
array_1 = np.array([1, 2, 3, 4, 5])
array_2 = np.array([10, 20, 30, 40, 50])
condition_array = np.array([True, False, True, False, True])
# Use np.where ufunc to create a new array based on the condition
result_array = np.where(condition_array, array_1, array_2)
# Print the original arrays and the resulting array
print('Array 1:\n', array_1)
print('Array 2:\n', array_2)
print('Condition array:\n', condition_array)
print('Resulting array using np.where:\n', result_array)
Output:
Array 1: [1 2 3 4 5] Array 2: [10 20 30 40 50] Condition array: [ True False True False True] Resulting array using np.where: [ 1 20 3 40 5]
Explanation:
- Import Libraries:
- Imported numpy as "np" for array creation and manipulation.
- Create Three 1D NumPy Arrays:
- Created three 1D NumPy arrays: array_1 with values [1, 2, 3, 4, 5], array_2 with values [10, 20, 30, 40, 50], and condition_array with boolean values [True, False, True, False, True].
- Use np.where ufunc:
- Use the np.where "ufunc" to create a new array result_array based on the condition applied to condition_array. If the condition is True, the corresponding element from ‘array_1’ is chosen; otherwise, the element from ‘array_2’ is chosen.
- Print Results:
- Print the original arrays and the resulting array created using np.where.
Python-Numpy Code Editor:
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics