Fit a statistical model using MLE with NumPy and SciPy
NumPy: Integration with SciPy Exercise-19 with Solution
Write a NumPy program to generate a set of data and fit a statistical model using SciPy's optimize module for maximum likelihood estimation (MLE).
Sample Solution:
Python Code:
import numpy as np
from scipy.optimize import minimize
import matplotlib.pyplot as plt
# Generate synthetic data: sample from a normal distribution
np.random.seed(42)
data = np.random.normal(loc=5.0, scale=2.0, size=1000)
# Define the negative log-likelihood function for a normal distribution
def neg_log_likelihood(params):
mu, sigma = params
if sigma <= 0:
return np.inf
nll = -np.sum(np.log(1/(np.sqrt(2 * np.pi) * sigma) * np.exp(-(data - mu)**2 / (2 * sigma**2))))
return nll
# Initial guess for the parameters (mean and standard deviation)
initial_params = np.array([0.0, 1.0])
# Perform MLE using SciPy's minimize function
result = minimize(neg_log_likelihood, initial_params, method='L-BFGS-B', bounds=[(None, None), (1e-5, None)])
# Extract the estimated parameters
mu_mle, sigma_mle = result.x
# Print the results
print(f"Estimated mean (mu): {mu_mle:.3f}")
print(f"Estimated standard deviation (sigma): {sigma_mle:.3f}")
# Plot the data and the fitted normal distribution
plt.hist(data, bins=30, density=True, alpha=0.6, color='g')
# Plot the fitted normal distribution
x = np.linspace(min(data), max(data), 1000)
fitted_pdf = (1/(np.sqrt(2 * np.pi) * sigma_mle)) * np.exp(-(x - mu_mle)**2 / (2 * sigma_mle**2))
plt.plot(x, fitted_pdf, label='Fitted Normal Distribution', linewidth=2)
plt.xlabel('Data values')
plt.ylabel('Density')
plt.title('Data and Fitted Normal Distribution using MLE')
plt.legend()
plt.show()
Output:
Explanation:
- Import libraries:
- Import the necessary modules from NumPy, SciPy, and Matplotlib.
- Generate synthetic data:
- Create a sample dataset from a normal distribution using NumPy.
- Define the negative log-likelihood function:
- Define the function for the negative log-likelihood of a normal distribution.
- Initial guess:
- Provide an initial guess for the parameters (mean and standard deviation).
- Perform MLE:
- Use SciPy's minimize function with the L-BFGS-B method to find the parameters that minimize the negative log-likelihood.
- Extract parameters:
- Retrieve the estimated parameters (mean and standard deviation) from the result.
- Print results:
- Output the estimated parameters.
- Use Matplotlib to visualize the histogram of the data and the fitted normal distribution.
Python-Numpy Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Create a 2D grid and solve a PDE with NumPy and SciPy.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/numpy/fit-a-statistical-model-using-mle-with-numpy-and-scipy.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics