NumPy - Cumulative sum of large array using For loop and optimization
NumPy: Performance Optimization Exercise-11 with Solution
Write a NumPy program that creates a function to calculate the cumulative sum of a large NumPy array using a for loop. Optimize it using NumPy's cumsum() function.
Sample Solution:
Python Code:
import numpy as np
# Generate a large 1D NumPy array with random integers
large_array = np.random.randint(1, 1000, size=1000000)
# Function to calculate cumulative sum using a for loop
def cumulative_sum_with_loop(arr):
cum_sum = np.empty_like(arr)
cum_sum[0] = arr[0]
for i in range(1, len(arr)):
cum_sum[i] = cum_sum[i - 1] + arr[i]
return cum_sum
# Calculate cumulative sum using the for loop method
cumsum_with_loop = cumulative_sum_with_loop(large_array)
# Calculate cumulative sum using NumPy's cumsum() function
cumsum_with_numpy = np.cumsum(large_array)
# Display first 10 results to verify
print("First 10 results using for loop:")
print(cumsum_with_loop[:10])
print("First 10 results using NumPy:")
print(cumsum_with_numpy[:10])
Output:
First 10 results using for loop: [ 654 1458 2169 2433 2841 3397 4373 5060 6027 6726] First 10 results using NumPy: [ 654 1458 2169 2433 2841 3397 4373 5060 6027 6726]
Explanation:
- Importing numpy: We first import the numpy library for array manipulations.
- Generating a large array: A large 1D NumPy array with random integers is generated.
- Defining the function: A function cumulative_sum_with_loop is defined to calculate the cumulative sum using a for loop.
- Calculating with loop: The cumulative sum is calculated using the for loop method.
- Calculating with numpy: The cumulative sum is calculated using NumPy's built-in cumsum() function.
- Displaying results: The first 10 results from both methods are printed out to verify correctness.
Python-Numpy Code Editor:
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics