Numpy program to count Non-Zero elements in large 2D srray using For loop and Optimization
NumPy: Performance Optimization Exercise-17 with Solution
Write a NumPy program that creates a large 2D NumPy array and write a function to count the number of non-zero elements using a for loop. Optimize it using NumPy's count_nonzero() function.
Sample Solution:
Python Code:
import numpy as np
# Generate two large 1D NumPy arrays with random integers
array1 = np.random.randint(1, 1000, size=1000)
array2 = np.random.randint(1, 1000, size=1000)
# Function to calculate the outer product using nested for loops
def outer_product_with_loops(arr1, arr2):
result = np.empty((len(arr1), len(arr2)), dtype=int)
for i in range(len(arr1)):
for j in range(len(arr2)):
result[i, j] = arr1[i] * arr2[j]
return result
# Calculate the outer product using the nested for loops method
outer_with_loops = outer_product_with_loops(array1, array2)
# Calculate the outer product using NumPy's outer() function
outer_with_numpy = np.outer(array1, array2)
# Display the first 10x10 section of the result to verify
print("Outer product using for loops (first 10x10 elements):")
print(outer_with_loops[:10, :10])
print("Outer product using NumPy (first 10x10 elements):")
print(outer_with_numpy[:10, :10])
Output:
Outer product using for loops (first 10x10 elements): [[120696 300456 784952 512744 700208 719040 564104 847440 660832 632584] [ 49773 123903 323701 211447 288754 296520 232627 349470 272516 260867] [ 94611 235521 615307 401929 548878 563640 442189 664290 518012 495869] [ 95739 238329 622643 406721 555422 570360 447461 672210 524188 501781] [ 88548 220428 575876 376172 513704 527520 413852 621720 484816 464092] [ 28482 70902 185234 120998 165236 169680 133118 199980 155944 149278] [118863 295893 773031 504957 689574 708120 555537 834570 650796 622977] [ 52593 130923 342041 223427 305114 313320 245807 369270 287956 275647] [ 68385 170235 444745 290515 396730 407400 319615 480150 374420 358415] [134514 334854 874818 571446 780372 801360 628686 944460 736488 705006]] Outer product using NumPy (first 10x10 elements): [[120696 300456 784952 512744 700208 719040 564104 847440 660832 632584] [ 49773 123903 323701 211447 288754 296520 232627 349470 272516 260867] [ 94611 235521 615307 401929 548878 563640 442189 664290 518012 495869] [ 95739 238329 622643 406721 555422 570360 447461 672210 524188 501781] [ 88548 220428 575876 376172 513704 527520 413852 621720 484816 464092] [ 28482 70902 185234 120998 165236 169680 133118 199980 155944 149278] [118863 295893 773031 504957 689574 708120 555537 834570 650796 622977] [ 52593 130923 342041 223427 305114 313320 245807 369270 287956 275647] [ 68385 170235 444745 290515 396730 407400 319615 480150 374420 358415] [134514 334854 874818 571446 780372 801360 628686 944460 736488 705006]]
Explanation:
- Importing numpy: We first import the numpy library for array manipulations.
- Generating large arrays: Two large 1D NumPy arrays with random integers are generated.
- Defining the function: A function outer_product_with_loops is defined to calculate the outer product using nested for loops.
- Calculating with loops: The outer product is calculated using the nested for loops method.
- Calculating with numpy: The outer product is calculated using NumPy's built-in outer() function.
- Displaying results: The first 10x10 section of the outer product from both methods is printed out to verify correctness.
Python-Numpy Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Numpy - Calculate outer product of two large arrays using For loops and Optimization.
Next: Numpy - Compute Variance of large array using For loop and Optimization.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/numpy/numpy-program-to-count-non-zero-elements-in-large-2d-array.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics