Mastering NumPy: 100 Exercises with solutions for Python numerical computing
NumPy: Exercise-100 with Solution
Welcome to w3resource's 100 NumPy exercises collection! This comprehensive set of exercises is designed to help you master the fundamentals of NumPy, a powerful numerical computing library in Python. Whether you're a beginner or an experienced user looking to improve your skills, these exercises cover a wide range of topics. They provide practical challenges to enhance your NumPy understanding.
Exercise 1:
Create a 1D array with values ranging from 0 to 9.
import numpy as np
arr = np.arange(10)
print(arr)
[0 1 2 3 4 5 6 7 8 9]
Exercise 2:
Convert a 1D array to a 2D array with 2 rows.
import numpy as np
arr = np.arange(10).reshape(2, -1)
print(arr)
[[0 1 2 3 4] [5 6 7 8 9]]
Exercise 3:
Multiply a 5x3 matrix by a 3x2 matrix.
import numpy as np
mat1 = np.random.random((5, 3))
mat2 = np.random.random((3, 2))
result = np.dot(mat1, mat2)
print(result)
[[1.05787846 0.32439392] [2.18241234 0.68182548] [1.23629853 0.39596044] [0.42973189 0.12403945] [1.08039539 0.36356378]]
Exercise 4:
Extract all odd numbers from an array of 1-10.
import numpy as np
arr = np.arange(1, 11)
odd_numbers = arr[arr % 2 != 0]
print(odd_numbers)
[1 3 5 7 9]
Exercise 5:
Replace all odd numbers in an array of 1-10 with -1.
import numpy as np
arr = np.arange(1, 10)
arr[arr % 2 != 0] = -1
print(arr)
[-1 2 -1 4 -1 6 -1 8 -1]
Exercise 6:
Convert a 1D array to a boolean array where all positive values become True.
import numpy as np
arr = np.array([-1, 2, 0, -4, 5])
boolean_arr = arr > 0
print(boolean_arr)
[False True False False True]
Exercise 7:
Replace all even numbers in a 1D array with their negative.
import numpy as np
arr = np.arange(1, 10)
arr[arr % 2 == 0] *= -1
print(arr)
[ 1 -2 3 -4 5 -6 7 -8 9]
Exercise 8:
Create a random 3x3 matrix and normalize it.
import numpy as np
matrix = np.random.random((3,3))
normalized_matrix = (matrix - np.mean(matrix)) / np.std(matrix)
print(normalized_matrix)
[[ 1.07755282 -0.27940552 -1.57739216] [ 1.53962723 1.25274094 -0.97454418] [-0.30801978 -0.26192698 -0.46863236]]
Exercise 9:
Calculate the sum of the diagonal elements of a 3x3 matrix.
import numpy as np
matrix = np.random.random((3, 3))
diagonal_sum = np.trace(matrix)
print(diagonal_sum)
1.0183501284750802
Exercise 10:
Find the indices of non-zero elements from [1,2,0,0,4,0].
import numpy as np
arr = np.array([1, 2, 0, 0, 4, 0])
non_zero_indices = np.nonzero(arr)
print(non_zero_indices)
(array([0, 1, 4], dtype=int64),)
Exercise 11:
Reverse a 1D array (first element becomes the last).
import numpy as np
arr = np.arange(10)
reversed_arr = np.flip(arr)
print(reversed_arr)
[9 8 7 6 5 4 3 2 1 0]
Exercise 12:
Create a 3x3 identity matrix.
import numpy as np
identity_matrix = np.eye(3)
print(identity_matrix)
[[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]]
Exercise 13:
Reshape a 1D array to a 2D array with 5 rows and 2 columns.
import numpy as np
arr = np.arange(10)
reshaped_arr = arr.reshape(5, 2)
print(reshaped_arr)
[[0 1] [2 3] [4 5] [6 7] [8 9]]
Exercise 14:
Stack two arrays vertically.
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
stacked_arr = np.vstack((arr1, arr2))
print(stacked_arr)
[[1 2 3] [4 5 6]]
Exercise 15:
Get the common items between two arrays.
import numpy as np
arr1 = np.array([1, 2, 3, 4, 5])
arr2 = np.array([3, 4, 5, 6, 7])
common_items = np.intersect1d(arr1, arr2)
print(common_items)
[3 4 5]
Exercise 16:
Create a 5x5 matrix with row values ranging from 0 to 4.
import numpy as np
matrix = np.zeros((5, 5))
matrix += np.arange(5)
print(matrix)
[[0. 1. 2. 3. 4.] [0. 1. 2. 3. 4.] [0. 1. 2. 3. 4.] [0. 1. 2. 3. 4.] [0. 1. 2. 3. 4.]]
Exercise 17:
Find the index of the maximum value in a 1D array.
import numpy as np
arr = np.array([3, 7, 1, 10, 4])
max_index = np.argmax(arr)
print(max_index)
3
Exercise 18:
Normalize the values in a 1D array between 0 and 1.
import numpy as np
arr = np.array([2, 5, 10, 3, 8])
normalized_arr = (arr - np.min(arr)) / (np.max(arr) - np.min(arr))
print(normalized_arr)
[0. 0.375 1. 0.125 0.75 ]
Exercise 19:
Calculate the dot product of two arrays.
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
dot_product = np.dot(arr1, arr2)
print(dot_product)
32
Exercise 20:
Count the number of elements in an array within a specific range.
import numpy as np
arr = np.array([2, 5, 8, 10, 12, 15])
count_within_range = np.sum((arr >= 5) & (arr <= 12))
print(count_within_range)
4
Exercise 21:
Find the mean of each row in a 2D array.
import numpy as np
matrix = np.random.random((3, 4))
row_means = np.mean(matrix, axis=1)
print(row_means)
[0.437043 0.73541944 0.45005375]
Exercise 22:
Create a random 4x4 matrix and extract the diagonal elements.
import numpy as np
matrix = np.random.random((4, 4))
diagonal_elements = np.diag(matrix)
print(diagonal_elements)
[0.3968107 0.3355669 0.91924761 0.907174 ]
Exercise 23:
Count the number of occurrences of a specific value in an array.
import numpy as np
arr = np.array([1, 2, 3, 4, 2, 3, 2, 1])
count_of_2 = np.count_nonzero(arr == 2)
print(count_of_2)
3
Exercise 24:
Replace all values in a 1D array with the mean of the array.
import numpy as np
arr = np.array([10, 20, 30, 40, 50])
arr[:] = np.mean(arr)
print(arr)
[30 30 30 30 30]
Exercise 25:
Find the indices of the maximum and minimum values in a 1D array.
import numpy as np
arr = np.array([5, 2, 8, 1, 7])
max_index = np.argmax(arr)
min_index = np.argmin(arr)
print("Index of max:", max_index)
print("Index of min:", min_index)
Index of max: 2 Index of min: 3
Exercise 26:
Create a 2D array with 1 on the border and 0 inside.
import numpy as np
arr = np.ones((5, 5))
arr[1:-1, 1:-1] = 0
print(arr)
[[1. 1. 1. 1. 1.] [1. 0. 0. 0. 1.] [1. 0. 0. 0. 1.] [1. 0. 0. 0. 1.] [1. 1. 1. 1. 1.]]
Exercise 27:
Find the unique values and their counts in a 1D array.
import numpy as np
arr = np.array([1, 2, 3, 2, 4, 1, 5, 4, 6])
unique_values, counts = np.unique(arr, return_counts=True)
print("Unique values:", unique_values)
print("Counts:", counts)
Unique values: [1 2 3 4 5 6] Counts: [2 2 1 2 1 1]
Exercise 28:
Create a 3x3 matrix with values ranging from 0 to 8.
import numpy as np
matrix = np.arange(9).reshape(3, 3)
print(matrix)
[[0 1 2] [3 4 5] [6 7 8]]
Exercise 29:
Calculate the exponential of all elements in a 1D array.
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
exponential_arr = np.exp(arr)
print(exponential_arr)
[ 2.71828183 7.3890561 20.08553692 54.59815003 148.4131591 ]
Exercise 30:
Swap two rows in a 2D array.
import numpy as np
matrix = np.random.random((3, 4))
matrix[[0, 1]] = matrix[[1, 0]]
print(matrix)
[[0.64447186 0.98641154 0.7336092 0.79829912] [0.00753743 0.65414365 0.74147161 0.14819561] [0.53158903 0.89859906 0.75709264 0.49165449]]
Exercise 31:
Create a random 3x3 matrix and replace all values greater than 0.5 with 1 and all others with 0.
import numpy as np
matrix = np.random.random((3, 3))
matrix[matrix > 0.5] = 1
matrix[matrix <= 0.5] = 0
print(matrix)
[[1. 0. 1.] [0. 0. 0.] [0. 0. 0.]]
Exercise 32:
Find the indices of the top N maximum values in a 1D array.
import numpy as np
arr = np.array([10, 5, 8, 20, 15])
top_indices = np.argsort(arr)[-2:] # Replace 2 with desired top N
print(top_indices)
[4 3]
Exercise 33:
Calculate the mean of each column in a 2D array.
import numpy as np
matrix = np.random.random((4, 3))
column_means = np.mean(matrix, axis=0)
print(column_means)
[0.54904302 0.4902671 0.42925161]
Exercise 34:
Normalize the values in each column of a 2D array.
import numpy as np
matrix = np.random.random((4, 3))
normalized_matrix = (matrix - np.mean(matrix, axis=0)) / np.std(matrix, axis=0)
print(normalized_matrix)
[[-0.46748521 -0.77417852 -0.84330049] [ 1.0967056 1.71309044 0.71160507] [ 0.7764295 -0.58168559 1.24351291] [-1.4056499 -0.35722632 -1.11181749]]
Exercise 35:
Concatenate two 1D arrays.
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
concatenated_arr = np.concatenate((arr1, arr2))
print(concatenated_arr)
[1 2 3 4 5 6]
Exercise 36:
Create a 2D array with random values and sort each row.
import numpy as np
matrix = np.random.random((3, 4))
sorted_matrix = np.sort(matrix, axis=1)
print(sorted_matrix)
[[0.10858953 0.71557663 0.7986983 0.90525131] [0.318373 0.50887498 0.51900254 0.7860126 ] [0.06242782 0.12665803 0.12884579 0.1440853 ]]
Exercise 37:
Compute the mean squared error between two arrays.
import numpy as np
arr1 = np.array([1, 2, 3, 4])
arr2 = np.array([2, 3, 4, 5])
mse = np.mean((arr1 - arr2) ** 2)
print(mse)
1.0
Exercise 38:
Replace all negative values in an array with 0.
import numpy as np
arr = np.array([-1, 2, -3, 4, -5])
arr[arr < 0] = 0
print(arr)
[0 2 0 4 0]
Exercise 39:
Find the 5th and 95th percentiles of an array.
import numpy as np
arr = np.random.random(10)
percentile_5th = np.percentile(arr, 5)
percentile_95th = np.percentile(arr, 95)
print("5th Percentile:", percentile_5th)
print("95th Percentile:", percentile_95th)
5th Percentile: 0.04785597751800983 95th Percentile: 0.8708086577975086
Exercise 40:
Create a random 2x2 matrix and compute its determinant.
import numpy as np
matrix = np.random.random((2, 2))
determinant = np.linalg.det(matrix)
print(determinant)
0.0019446951056262907
Exercise 41:
Count the number of elements in an array that are greater than the mean.
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
count_above_mean = np.sum(arr > np.mean(arr))
print(count_above_mean)
2
Exercise 42:
Calculate the square root of each element in a 1D array.
import numpy as np
arr = np.array([4, 9, 16, 25])
sqrt_arr = np.sqrt(arr)
print(sqrt_arr)
[2. 3. 4. 5.]
Exercise 43:
Create a 3x3 matrix and compute the matrix square root.
import numpy as np
matrix = np.random.random((3, 3))
matrix_sqrt = np.linalg.matrix_power(matrix, 2)
print(matrix_sqrt)
[[0.62607741 0.64326801 0.24778017] [1.35236384 1.43972006 0.56587005] [0.617024 0.71519995 0.29469311]]
Exercise 44:
Convert the data type of an array to float.
import numpy as np
arr = np.array([1, 2, 3, 4], dtype=int)
float_arr = arr.astype(float)
print(float_arr)
[1. 2. 3. 4.]
Exercise 45:
Calculate the element-wise absolute values of an array.
import numpy as np
arr = np.array([-1, -2, 3, -4])
abs_values = np.abs(arr)
print(abs_values)
[1 2 3 4]
Exercise 46:
Find the indices where elements of two arrays match.
import numpy as np
arr1 = np.array([1, 2, 3, 4, 5])
arr2 = np.array([3, 2, 8, 4, 5])
matching_indices = np.where(arr1 == arr2)
print(matching_indices)
(array([1, 3, 4], dtype=int64),)
Exercise 47:
Calculate the cumulative sum of elements in a 1D array.
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
cumulative_sum = np.cumsum(arr)
print(cumulative_sum)
[ 1 3 6 10 15]
Exercise 48:
Compute the inverse of a 2x2 matrix.
import numpy as np
matrix = np.random.random((2, 2))
inverse_matrix = np.linalg.inv(matrix)
print(inverse_matrix)
[[ 1.22685384 -4.14864181] [-0.2704788 6.62123806]]
Exercise 49:
Count the number of non-zero elements in a 2D array.
import numpy as np
matrix = np.array([[0, 1, 0], [2, 0, 3], [0, 4, 0]])
non_zero_count = np.count_nonzero(matrix)
print(non_zero_count)
4
Exercise 50:
Create a 2D array and replace all nan values with 0.
import numpy as np
matrix = np.array([[1, np.nan, 3], [4, 5, np.nan], [7, 8, 9]])
matrix[np.isnan(matrix)] = 0
print(matrix)
[[1. 0. 3.] [4. 5. 0.] [7. 8. 9.]]
Exercise 51:
Find the correlation coefficient between two arrays.
import numpy as np
arr1 = np.array([1, 2, 3, 4, 5])
arr2 = np.array([3, 4, 5, 6, 7])
correlation_coefficient = np.corrcoef(arr1, arr2)[0, 1]
print(correlation_coefficient)
0.9999999999999999
Exercise 52:
Create a 1D array and remove all duplicate values.
import numpy as np
arr = np.array([1, 2, 3, 2, 4, 5, 1])
unique_arr = np.unique(arr)
print(unique_arr)
[1 2 3 4 5]
Exercise 53:
Compute the element-wise product of two arrays.
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
elementwise_product = np.multiply(arr1, arr2)
print(elementwise_product)
[ 4 10 18]
Exercise 54:
Calculate the standard deviation of each column in a 2D array.
import numpy as np
matrix = np.random.random((4, 3))
column_stddev = np.std(matrix, axis=0)
print(column_stddev)
[0.22702366 0.27411548 0.25568707]
Exercise 55:
Create a 2D array and set all values above a certain threshold to that threshold.
import numpy as np
matrix = np.random.random((3, 4))
threshold = 0.7
matrix[matrix > threshold] = threshold
print(matrix)
[[0.7 0.54918234 0.7 0.01893358] [0.09114833 0.00268936 0.13766009 0.28160436] [0.40448374 0.7 0.7 0.30830747]]
Exercise 56:
Create a random 5x5 matrix and replace the maximum value by -1.
import numpy as np
matrix = np.random.random((5, 5))
max_value_index = np.unravel_index(np.argmax(matrix), matrix.shape)
matrix[max_value_index] = -1
print(matrix)
[[ 0.45916565 0.79856137 0.68998918 0.04439129 0.84814684] [ 0.4442666 0.2661443 0.83980951 0.71727557 0.30334519] [ 0.47332068 0.50437988 0.51222628 0.65334221 0.21664521] [ 0.7511065 0.77837283 0.29019334 0.82695944 0.41608473] [ 0.23775068 0.07539172 -1. 0.14166163 0.56071446]]
Exercise 57:
Convert a 1D array of Fahrenheit temperatures to Celsius.
import numpy as np
fahrenheit_temps = np.array([32, 68, 100, 212])
celsius_temps = (fahrenheit_temps - 32) * 5/9
print(celsius_temps)
[ 0. 20. 37.77777778 100. ]
Exercise 58:
Compute the outer product of two arrays.
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
outer_product = np.outer(arr1, arr2)
print(outer_product)
[[ 4 5 6] [ 8 10 12] [12 15 18]]
Exercise 59:
Create a 1D array with 10 equidistant values between 0 and 1.
import numpy as np
equidistant_arr = np.linspace(0, 1, 10)
print(equidistant_arr)
[0. 0.11111111 0.22222222 0.33333333 0.44444444 0.55555556 0.66666667 0.77777778 0.88888889 1. ]
Exercise 60:
Compute the cross product of two 3D arrays.
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
cross_product = np.cross(arr1, arr2)
print(cross_product)
[-3 6 -3]
Exercise 61:
Calculate the percentile along a specific axis of a 2D array.
import numpy as np
matrix = np.random.random((3, 4))
percentiles_axis1 = np.percentile(matrix, 75, axis=1)
print(percentiles_axis1)
[0.73954718 0.63159296 0.49097014]
Exercise 62:
Create a 1D array and add a border of 0s around it.
import numpy as np
arr = np.array([1, 2, 3, 4])
arr_with_border = np.pad(arr, (1, 1), mode='constant', constant_values=0)
print(arr_with_border)
[0 1 2 3 4 0]
Exercise 63:
Compute the histogram of a 1D array.
import numpy as np
arr = np.array([1, 1, 2, 2, 2, 3, 3, 3, 3])
hist, bins = np.histogram(arr, bins=[1, 2, 3, 4])
print("Histogram:", hist)
print("Bin edges:", bins)
Histogram: [2 3 4] Bin edges: [1 2 3 4]
Exercise 64:
Create a 2D array with random values and normalize each row.
import numpy as np
matrix = np.random.random((4, 3))
normalized_rows = matrix / np.linalg.norm(matrix, axis=1, keepdims=True)
print(normalized_rows)
[[0.61881278 0.58433001 0.52500398] [0.50152886 0.39533452 0.76953195] [0.18399814 0.89840062 0.39877439] [0.76636647 0.25223155 0.59081442]]
Exercise 65:
Create a random 2D array and sort it by the second column.
import numpy as np
matrix = np.random.random((3, 4))
sorted_matrix_by_column2 = matrix[matrix[:, 1].argsort()]
print(sorted_matrix_by_column2)
[[0.28214407 0.30234856 0.56159219 0.34651641] [0.72579465 0.64605243 0.14824549 0.6364958 ] [0.4852539 0.96161675 0.41756529 0.7079494 ]]
Exercise 66:
Calculate the determinant of a 3x3 matrix.
import numpy as np
matrix = np.random.random((3, 3))
determinant = np.linalg.det(matrix)
print(determinant)
0.09550080558000806
Exercise 67:
Calculate the element-wise exponentiation of a 1D array.
import numpy as np
arr = np.array([2, 3, 4])
exponentiated_arr = np.exp(arr)
print(exponentiated_arr)
[ 7.3890561 20.08553692 54.59815003]
Exercise 68:
Calculate the Frobenius norm of a 2D array.
import numpy as np
matrix = np.random.random((3, 4))
frobenius_norm = np.linalg.norm(matrix)
print(frobenius_norm)
1.8692600488600242
Exercise 69:
Create a 2D array with random values and replace the maximum value with the minimum.
import numpy as np
matrix = np.random.random((3, 4))
max_value_index = np.unravel_index(np.argmax(matrix), matrix.shape)
min_value = np.min(matrix)
matrix[max_value_index] = min_value
print(matrix)
[[0.29383093 0.01637657 0.7794734 0.01637657] [0.76911564 0.22745882 0.32986131 0.84500937] [0.94922056 0.54607467 0.80921816 0.28474546]]
Exercise 70:
Compute the matrix multiplication of two 2D arrays.
import numpy as np
matrix1 = np.random.random((3, 4))
matrix2 = np.random.random((4, 5))
matrix_multiplication = np.dot(matrix1, matrix2)
print(matrix_multiplication)
[[0.99119942 0.85513185 0.57664501 0.31851386 0.84601174] [1.38306551 1.16773145 0.83001893 0.68922723 1.12666608] [1.72827308 1.44430652 1.03782659 1.28492828 1.24906297]]
Exercise 71:
Create a 1D array and set the values between 10 and 20 to 0.
import numpy as np
arr = np.array([5, 15, 12, 18, 25])
arr[(arr >= 10) & (arr <= 20)] = 0
print(arr)
[ 5 0 0 0 25]
Exercise 72:
Compute the inverse hyperbolic sine of each element in a 1D array.
import numpy as np
arr = np.array([1, 2, 3, 4])
inverse_sineh_arr = np.arcsinh(arr)
print(inverse_sineh_arr)
[0.88137359 1.44363548 1.81844646 2.09471255]
Exercise 73:
Compute the Kronecker product of two arrays.
import numpy as np
arr1 = np.array([1, 2])
arr2 = np.array([3, 4])
kronecker_product = np.kron(arr1, arr2)
print(kronecker_product)
[3 4 6 8]
Exercise 74:
Calculate the mean absolute deviation of a 1D array.
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
mean_absolute_deviation = np.mean(np.abs(arr - np.mean(arr)))
print(mean_absolute_deviation)
1.2
Exercise 75:
Create a 3x3 matrix and set all values above the main diagonal to zero.
import numpy as np
matrix = np.random.random((3, 3))
matrix[np.triu_indices(3, 1)] = 0
print(matrix)
[[0.7344708 0. 0. ] [0.91154103 0.58004909 0. ] [0.53953411 0.73231191 0.8315308 ]]
Exercise 76:
Count the number of occurrences of each unique value in a 1D array.
import numpy as np
arr = np.array([2, 2, 1, 3, 3, 3, 4])
unique_values, counts = np.unique(arr, return_counts=True)
print("Unique values:", unique_values)
print("Counts:", counts)
Unique values: [1 2 3 4] Counts: [1 2 3 1]
Exercise 77:
Compute the cumulative product of elements along a given axis in a 2D array.
import numpy as np
matrix = np.random.random((3, 4))
cumulative_product_axis0 = np.cumprod(matrix, axis=0)
print(cumulative_product_axis0)
[[0.65005294 0.01951926 0.25636043 0.30961964] [0.28738887 0.00883133 0.24993819 0.06504888] [0.21895124 0.00590692 0.0116853 0.03512077]]
Exercise 78:
Round elements of a 1D array to the nearest integer.
import numpy as np
arr = np.array([1.2, 2.7, 3.5, 4.9])
rounded_arr = np.round(arr)
print(rounded_arr)
[1. 3. 4. 5.]
Exercise 79:
Create a 1D array and append a new element to the end.
import numpy as np
arr = np.array([1, 2, 3])
new_element = 4
arr = np.append(arr, new_element)
print(arr)
[1 2 3 4]
Exercise 80:
Calculate the element-wise absolute difference between two arrays.
import numpy as np
arr1 = np.array([3, 7, 1, 10, 4])
arr2 = np.array([2, 5, 8, 1, 7])
absolute_difference = np.abs(arr1 - arr2)
print(absolute_difference)
[1 2 7 9 3]
Exercise 81:
Create a 2D array with random values and replace the maximum value in each row with -1.
import numpy as np
matrix = np.random.random((3, 4))
max_values_indices = np.argmax(matrix, axis=1)
matrix[np.arange(matrix.shape[0]), max_values_indices] = -1
print(matrix)
[[ 0.14015869 0.13279371 -1. 0.4665563 ] [ 0.73795369 0.311774 -1. 0.05087541] [ 0.6516183 -1. 0.30233177 0.48674956]]
Exercise 82:
Normalize the columns of a 2D array to have a sum of 1.
import numpy as np
matrix = np.random.random((3, 4))
normalized_columns = matrix / np.sum(matrix, axis=0, keepdims=True)
print(normalized_columns)
[[0.00548299 0.49881449 0.16102029 0.23643045] [0.58935257 0.27548946 0.54365728 0.57390056] [0.40516443 0.22569604 0.29532244 0.18966899]]
Exercise 83:
Find the indices of the top N minimum values in a 1D array.
import numpy as np
arr = np.array([10, 5, 8, 1, 7])
top_indices = np.argsort(arr)[:2] # Replace 2 with desired top N
print(top_indices)
[3 1]
Exercise 84:
Convert the elements of a 1D array to strings.
import numpy as np
arr = np.array([1, 2, 3, 4])
string_arr = arr.astype(str)
print(string_arr)
['1' '2' '3' '4']
Exercise 85:
Compute the percentile rank of each element in a 1D array.
import numpy as np
from scipy.stats import percentileofscore
arr = np.array([1, 2, 3, 4, 5])
# Calculate percentile rank for each element in arr
percentile_rank = np.array([percentileofscore(arr, value) for value in arr])
print(percentile_rank)
[ 20. 40. 60. 80. 100.]
Exercise 86:
Create a 1D array and shuffle its elements randomly.
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
np.random.shuffle(arr)
print(arr)
[4 2 5 1 3]
Exercise 87:
Check if all elements in a 1D array are non-zero.
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
all_nonzero = np.all(arr != 0)
print(all_nonzero)
True
Exercise 88:
Find the indices of the maximum value in each row of a 2D array.
import numpy as np
matrix = np.random.random((3, 4))
max_indices_per_row = np.argmax(matrix, axis=1)
print(max_indices_per_row)
[1 3 2]
Exercise 89:
Create a 2D array and replace all nan values with the mean of the array.
import numpy as np
matrix = np.array([[1, np.nan, 3], [4, 5, np.nan], [7, 8, 9]])
nan_mean = np.nanmean(matrix)
matrix[np.isnan(matrix)] = nan_mean
print(matrix)
[[1. 5.28571429 3. ] [4. 5. 5.28571429] [7. 8. 9. ]]
Exercise 90:
Calculate the mean of each row in a 2D array ignoring nan values.
import numpy as np
matrix = np.array([[1, 2, np.nan], [4, np.nan, 6], [7, 8, 9]])
row_means_ignore_nan = np.nanmean(matrix, axis=1)
print(row_means_ignore_nan)
[1.5 5. 8. ]
Exercise 91:
Compute the sum of diagonal elements in a 2D array.
import numpy as np
matrix = np.random.random((3, 3))
diagonal_sum = np.trace(matrix)
print(diagonal_sum)
1.375162416021255
Exercise 92:
Convert radians to degrees for each element in a 1D array.
import numpy as np
arr_in_radians = np.array([np.pi/2, np.pi, 3*np.pi/2])
arr_in_degrees = np.degrees(arr_in_radians)
print(arr_in_degrees)
[ 90. 180. 270.]
Exercise 93:
Calculate the pairwise Euclidean distance between two arrays.
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
euclidean_distance = np.linalg.norm(arr1 - arr2)
print(euclidean_distance)
5.196152422706632
Exercise 94:
Create a 1D array and set the values between the 25th and 75th percentile to 0.
import numpy as np
arr = np.array([10, 20, 30, 40, 50])
percentile_25th = np.percentile(arr, 25)
percentile_75th = np.percentile(arr, 75)
arr[(arr >= percentile_25th) & (arr <= percentile_75th)] = 0
print(arr)
[10 0 0 0 50]
Exercise 95:
Calculate the element-wise square of the difference between two arrays.
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
squared_difference = (arr1 - arr2)**2
print(squared_difference)
[9 9 9]
Exercise 96:
Replace all even numbers in a 1D array with the next odd number.
import numpy as np
arr = np.array([2, 5, 8, 12, 15])
arr[arr % 2 == 0] += 1
print(arr)
[ 3 5 9 13 15]
Exercise 97:
Create a 2D array and normalize each column by its range..
import numpy as np
matrix = np.random.random((3, 4))
normalized_columns_range = (matrix - np.min(matrix, axis=0)) / (np.max(matrix, axis=0) - np.min(matrix, axis=0))
print(normalized_columns_range)
[[0. 1. 0. 1. ] [0.38748809 0. 1. 0. ] [1. 0.39378719 0.83348354 0.78448847]]
Exercise 98:
Compute the cumulative sum of elements along a given axis in a 2D array.
import numpy as np
matrix = np.random.random((3, 4))
cumulative_sum_axis1 = np.cumsum(matrix, axis=1)
print(cumulative_sum_axis1)
[[0.23623571 0.76181793 1.40183102 2.02358543] [0.89415619 1.38540147 1.46977913 1.99923603] [0.3626984 0.94484957 1.24671758 2.19056585]]
Exercise 99:
Check if any element in a 1D array is non-zero.
import numpy as np
arr = np.array([0, 0, 0, 1, 0])
any_nonzero = np.any(arr != 0)
print(any_nonzero)
True
Exercise 100:
Create a 2D array with random integers and replace all values greater than a certain threshold with that threshold.
import numpy as np
matrix = np.random.randint(0, 100, size=(3, 4))
threshold = 75
matrix[matrix > threshold] = threshold
print(matrix)
[[72 55 56 26] [ 8 16 54 75] [13 74 36 75]]
Python-Numpy Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/numpy/numpy_100_exercises_with_solutions.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics