NumPy: Extract any array of shape from a given array of integer values
NumPy: Array Object Exercise-196 with Solution
Write a NumPy program to create a 12x12x4 array with random values and extract any array of shape(6,6,3) from the said array.
Sample Solution:
Python Code:
# Importing NumPy library
import numpy as np
# Creating a NumPy array of shape (8, 8, 3) filled with random float values between 0 and 1
nums = np.random.random((8, 8, 3))
# Displaying the original array
print("Original array:")
print(nums)
# Extracting a sub-array of shape (6, 6, 3) from the original array using slicing
new_nums = nums[:6, :6, :]
# Displaying the extracted sub-array
print("\nExtract array of shape (6, 6, 3) from the said array:")
print(new_nums)
Sample Output:
Original array: [[[0.67420382 0.5592584 0.27096382] [0.2896283 0.68346522 0.13996167] [0.74283318 0.06323309 0.0980022 ] [0.43203954 0.38888969 0.44801756] [0.04391897 0.4851516 0.34044817] [0.2202623 0.81434798 0.51900666] [0.12442371 0.91247823 0.01874549] [0.2287782 0.88089638 0.40583551]] [[0.42389039 0.21162537 0.39794135] [0.70118645 0.77166133 0.02891853] [0.13635083 0.77918942 0.93913105] [0.82898906 0.7946305 0.01150909] [0.05929642 0.59762989 0.7248887 ] [0.15162473 0.55354106 0.92956369] [0.21183182 0.92999156 0.57835296] [0.41929845 0.19565816 0.18662498]] [[0.87032715 0.50662785 0.54217065] [0.82355975 0.20349718 0.01538959] [0.24959705 0.62056295 0.07042258] [0.64422139 0.88416751 0.49174671] [0.21436044 0.55439367 0.61435127] [0.38492133 0.66637382 0.66080096] [0.3957137 0.48913863 0.67103063] [0.81766502 0.38401956 0.06543795]] [[0.78656194 0.86104692 0.70951371] [0.50050861 0.14680231 0.08608443] [0.73766323 0.32358634 0.70397593] [0.04155761 0.23332385 0.98193348] [0.60442283 0.6441864 0.40536901] [0.81750344 0.87604709 0.03573838] [0.14154893 0.24558416 0.62685956] [0.44853079 0.90103491 0.4339039 ]] [[0.51162248 0.32017957 0.28754968] [0.27526172 0.06626226 0.60503387] [0.90903854 0.05226501 0.26241159] [0.73163092 0.98252245 0.44887237] [0.94349225 0.14615167 0.83662707] [0.25880778 0.61251959 0.82794232] [0.00672891 0.1271131 0.65880109] [0.88851577 0.75109775 0.56399842]] [[0.85965509 0.11357479 0.27325381] [0.74156642 0.35108524 0.40305073] [0.44791592 0.28270286 0.45377936] [0.01543443 0.14978493 0.47738367] [0.63671823 0.75239388 0.59118693] [0.55932007 0.32759274 0.25519358] [0.79183605 0.18399144 0.84579649] [0.06608463 0.63129404 0.78672545]] [[0.23577256 0.24679561 0.46901338] [0.43949749 0.93467498 0.9023869 ] [0.58850225 0.24534939 0.92965553] [0.26322984 0.13130557 0.67981953] [0.36389878 0.74552644 0.25606283] [0.77564163 0.50464125 0.3598317 ] [0.49057984 0.9482408 0.84635511] [0.70071485 0.43268376 0.39706312]] [[0.28021231 0.47537742 0.72971633] [0.87380873 0.83031311 0.56713737] [0.23093306 0.22830678 0.54439754] [0.88130002 0.37081258 0.78148687] [0.00318428 0.62297164 0.58875116] [0.68102061 0.31822913 0.04432477] [0.70410386 0.56770957 0.42998752] [0.5891714 0.25692428 0.19184309]]] Extract array of shape (6,6,3) from the said array: [[[0.67420382 0.5592584 0.27096382] [0.2896283 0.68346522 0.13996167] [0.74283318 0.06323309 0.0980022 ] [0.43203954 0.38888969 0.44801756] [0.04391897 0.4851516 0.34044817] [0.2202623 0.81434798 0.51900666]] [[0.42389039 0.21162537 0.39794135] [0.70118645 0.77166133 0.02891853] [0.13635083 0.77918942 0.93913105] [0.82898906 0.7946305 0.01150909] [0.05929642 0.59762989 0.7248887 ] [0.15162473 0.55354106 0.92956369]] [[0.87032715 0.50662785 0.54217065] [0.82355975 0.20349718 0.01538959] [0.24959705 0.62056295 0.07042258] [0.64422139 0.88416751 0.49174671] [0.21436044 0.55439367 0.61435127] [0.38492133 0.66637382 0.66080096]] [[0.78656194 0.86104692 0.70951371] [0.50050861 0.14680231 0.08608443] [0.73766323 0.32358634 0.70397593] [0.04155761 0.23332385 0.98193348] [0.60442283 0.6441864 0.40536901] [0.81750344 0.87604709 0.03573838]] [[0.51162248 0.32017957 0.28754968] [0.27526172 0.06626226 0.60503387] [0.90903854 0.05226501 0.26241159] [0.73163092 0.98252245 0.44887237] [0.94349225 0.14615167 0.83662707] [0.25880778 0.61251959 0.82794232]] [[0.85965509 0.11357479 0.27325381] [0.74156642 0.35108524 0.40305073] [0.44791592 0.28270286 0.45377936] [0.01543443 0.14978493 0.47738367] [0.63671823 0.75239388 0.59118693] [0.55932007 0.32759274 0.25519358]]]
Explanation:
In the above exercise -
nums = np.random.random((8, 8, 3)): This code first creates a 3-dimensional array nums with shape (8, 8, 3) filled with random values between 0 and 1.
new_nums = nums[:6, :6, :]: This code slices the “nums” array to create a new array new_nums. The slicing operation is performed on the first two dimensions (axis 0 and axis 1) using the slice :6, which means selecting elements from the beginning up to (but not including) index 6. The third dimension (axis 2) is kept entirely using the slice :.
Python-Numpy Code Editor:
Previous: Write a NumPy program to remove the first dimension from a given array of shape (1,3,4).
Next: Write a NumPy program to create to concatenate two given arrays of shape (2, 2) and (2,1).
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/numpy/python-numpy-exercise-196.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics