Pandas Datetime: Add 100 days with reporting date of unidentified flying object (UFO)
Write a Pandas program to add 100 days with reporting date of unidentified flying object (UFO).
Sample Solution :
Python Code :
import pandas as pd
from datetime import timedelta
df = pd.read_csv(r'ufo.csv')
df['Date_time'] = df['Date_time'].astype('datetime64[ns]')
print("Original Dataframe:")
print(df.head())
print("\nAdd 100 days with reporting date:")
df['New_doc_dt'] = df['Date_time'] + timedelta(days=180)
print(df)
Sample Output:
Original Dataframe: Date_time city ... latitude longitude 0 1910-06-01 15:00:00 wills point ... 32.709167 -96.008056 1 1920-06-11 21:00:00 cicero ... 40.123889 -86.013333 2 1929-07-05 14:00:00 buchanan (or burns) ... 43.642500 -118.627500 3 1931-06-01 13:00:00 abilene ... 38.917222 -97.213611 4 1939-06-01 20:00:00 waterloo ... 34.918056 -88.064167 [5 rows x 11 columns] Add 100 days with reporting date: Date_time ... New_doc_dt 0 1910-06-01 15:00:00 ... 1910-11-28 15:00:00 1 1920-06-11 21:00:00 ... 1920-12-08 21:00:00 2 1929-07-05 14:00:00 ... 1930-01-01 14:00:00 3 1931-06-01 13:00:00 ... 1931-11-28 13:00:00 4 1939-06-01 20:00:00 ... 1939-11-28 20:00:00 5 1939-07-07 02:00:00 ... 1940-01-03 02:00:00 6 1941-06-01 13:00:00 ... 1941-11-28 13:00:00 7 1942-06-01 22:30:00 ... 1942-11-28 22:30:00 8 1944-01-01 12:00:00 ... 1944-06-29 12:00:00 9 1944-06-01 12:00:00 ... 1944-11-28 12:00:00 10 1944-04-02 11:00:00 ... 1944-09-29 11:00:00 11 1945-06-01 13:30:00 ... 1945-11-28 13:30:00 12 1945-06-07 07:00:00 ... 1945-12-04 07:00:00 13 1945-08-08 12:00:00 ... 1946-02-04 12:00:00 14 1945-07-10 01:30:00 ... 1946-01-06 01:30:00 15 1946-02-01 17:00:00 ... 1946-07-31 17:00:00 16 1946-07-01 13:30:00 ... 1946-12-28 13:30:00 17 1946-01-08 02:00:00 ... 1946-07-07 02:00:00 18 1947-06-01 02:30:00 ... 1947-11-28 02:30:00 19 1947-06-01 17:00:00 ... 1947-11-28 17:00:00 20 1947-07-01 20:00:00 ... 1947-12-28 20:00:00 21 1947-07-01 20:00:00 ... 1947-12-28 20:00:00 22 1948-08-01 02:00:00 ... 1949-01-28 02:00:00 23 1948-05-10 19:00:00 ... 1948-11-06 19:00:00 24 1948-12-12 23:30:00 ... 1949-06-10 23:30:00 25 1949-05-01 14:00:00 ... 1949-10-28 14:00:00 26 1949-07-01 11:00:00 ... 1949-12-28 11:00:00 27 1949-07-01 16:00:00 ... 1949-12-28 16:00:00 28 1949-04-10 15:00:00 ... 1949-10-07 15:00:00 29 1950-06-01 16:00:00 ... 1950-11-28 16:00:00 .. ... ... ... 317 2002-03-01 06:15:00 ... 2002-08-28 06:15:00 318 2002-08-01 15:25:00 ... 2003-01-28 15:25:00 319 2002-01-02 17:30:00 ... 2002-07-01 17:30:00 320 2002-07-03 01:00:00 ... 2002-12-30 01:00:00 321 2002-07-04 20:23:00 ... 2002-12-31 20:23:00 322 2002-09-05 23:00:00 ... 2003-03-04 23:00:00 323 2002-10-05 23:00:00 ... 2003-04-03 23:00:00 324 2002-05-06 15:50:00 ... 2002-11-02 15:50:00 325 2002-01-07 18:00:00 ... 2002-07-06 18:00:00 326 2002-09-08 16:00:00 ... 2003-03-07 16:00:00 327 2002-05-09 18:00:00 ... 2002-11-05 18:00:00 328 2002-05-10 23:30:00 ... 2002-11-06 23:30:00 329 2002-01-11 18:45:00 ... 2002-07-10 18:45:00 330 2002-02-12 20:00:00 ... 2002-08-11 20:00:00 331 2003-04-01 01:00:00 ... 2003-09-28 01:00:00 332 2003-10-02 02:45:00 ... 2004-03-30 02:45:00 333 2003-11-04 20:00:00 ... 2004-05-02 20:00:00 334 2003-01-06 10:10:00 ... 2003-07-05 10:10:00 335 2003-05-07 02:00:00 ... 2003-11-03 02:00:00 336 2003-07-08 00:30:00 ... 2004-01-04 00:30:00 337 2003-04-09 21:00:00 ... 2003-10-06 21:00:00 338 2003-03-10 20:52:00 ... 2003-09-06 20:52:00 339 2003-07-11 20:50:00 ... 2004-01-07 20:50:00 340 2004-02-01 01:00:00 ... 2004-07-30 01:00:00 341 2004-10-02 18:20:00 ... 2005-03-31 18:20:00 342 2004-04-05 20:35:00 ... 2004-10-02 20:35:00 343 2004-10-06 23:00:00 ... 2005-04-04 23:00:00 344 2004-11-07 20:30:00 ... 2005-05-06 20:30:00 345 2004-12-08 05:30:00 ... 2005-06-06 05:30:00 346 2004-02-10 05:15:00 ... 2004-08-08 05:15:00 [347 rows x 12 columns]
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to get the difference (in days) between documented date and reporting date of unidentified flying object (UFO).
Next: Write a Pandas program to generate sequences of fixed-frequency dates and time spans.
What is the difficulty level of this exercise?
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics