w3resource

Pandas Datetime: Timewheel of Hour Vs Year comparison of the top 10 years in which the UFO was sighted


25. Timewheel: Hour vs. Year Comparison for Top 10 UFO Years

Write a Pandas program to create a Timewheel of Hour Vs Year comparison of the top 10 years in which the UFO was sighted.

Sample Solution:

Python Code:

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.cm as cm
#Source: https://bit.ly/2XDY2XN
df = pd.read_csv(r'ufo.csv')
df['Date_time'] = df['Date_time'].astype('datetime64[ns]')
most_sightings_years = df['Date_time'].dt.year.value_counts().head(10)
def is_top_years(year):
   if year in most_sightings_years.index:
       return year
month_vs_year = df.pivot_table(columns=df['Date_time'].dt.month,index=df['Date_time'].dt.year.apply(is_top_years),aggfunc='count',values='city')
month_vs_year.index = month_vs_year.index.astype(int)
month_vs_year.columns = month_vs_year.columns.astype(int)
print("\nComparison of the top 10 years in which the UFO was sighted vs each month:")
def pie_heatmap(table, cmap='coolwarm_r', vmin=None, vmax=None,inner_r=0.25, pie_args={}):
   n, m = table.shape
   vmin= table.min().min() if vmin is None else vmin
   vmax= table.max().max() if vmax is None else vmax

   centre_circle = plt.Circle((0,0),inner_r,edgecolor='black',facecolor='white',fill=True,linewidth=0.25)
   plt.gcf().gca().add_artist(centre_circle)
   norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
   cmapper = cm.ScalarMappable(norm=norm, cmap=cmap)

   for i, (row_name, row) in enumerate(table.iterrows()):
       labels = None if i > 0 else table.columns
       wedges = plt.pie([1] * m,radius=inner_r+float(n-i)/n, colors=[cmapper.to_rgba(x) for x in row.values],
           labels=labels, startangle=90, counterclock=False, wedgeprops={'linewidth':-1}, **pie_args)
       plt.setp(wedges[0], edgecolor='grey',linewidth=1.5)
       wedges = plt.pie([1], radius=inner_r+float(n-i-1)/n, colors=['w'], labels=[row_name], startangle=-90, wedgeprops={'linewidth':0})
       plt.setp(wedges[0], edgecolor='grey',linewidth=1.5)
plt.figure(figsize=(8,8))
plt.title("Timewheel of Hour Vs Year",y=1.08,fontsize=30)
pie_heatmap(month_vs_year, vmin=-20,vmax=80,inner_r=0.2)

Sample Output:

Comparison of the top 10 years in which the UFO was sighted vs each month:
C:\Users\User\Anaconda3\lib\site-packages\matplotlib\colors.py:512: RuntimeWarning: invalid value encountered in less
  xa[xa < 0] = -1
Comparison of the top 10 years in which the UFO was sighted vs each month

For more Practice: Solve these Related Problems:

  • Write a Pandas program to extract UFO sighting data for the top 10 years and create a timewheel chart comparing hours versus years.
  • Write a Pandas program to generate a circular plot that maps the observation hours against the top 10 UFO years.
  • Write a Pandas program to visualize the hourly distribution of UFO sightings for the top 10 years using a polar bar chart.
  • Write a Pandas program to create a pivot table summarizing UFO sightings by year and hour for the top 10 years and plot it as a timewheel.

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to create a heatmap (rectangular data as a color-encoded matrix) for comparison of the top 10 years in which the UFO was sighted vs each Month.

What is the difficulty level of this exercise?



Follow us on Facebook and Twitter for latest update.