w3resource

Pandas Datetime: Get all the sighting days of the unidentified flying object (ufo) between 1950-10-10 and 1960-10-10

Pandas Datetime: Exercise-5 with Solution

Write a Pandas program to get all the sighting days of the unidentified flying object (ufo) between 1950-10-10 and 1960-10-10.

Sample Solution :

Python Code :

import pandas as pd
df = pd.read_csv(r'ufo.csv')
df['Date_time'] = df['Date_time'].astype('datetime64[ns]')
print("Original Dataframe:")
print(df.head())
print("\nSighting days of the unidentified flying object (ufo) between 1949-10-10 and 1960-10-10:")
selected_period = df[(df['Date_time'] >= '1950-01-01 00:00:00') & (df['Date_time'] <= '1960-12-31 23:59:59')]
print(selected_period)

Sample Output:

Original Dataframe:
            Date_time                  city     ...       latitude   longitude
0 1910-06-01 15:00:00           wills point     ...      32.709167  -96.008056
1 1920-06-11 21:00:00                cicero     ...      40.123889  -86.013333
2 1929-07-05 14:00:00  buchanan  (or burns)     ...      43.642500 -118.627500
3 1931-06-01 13:00:00               abilene     ...      38.917222  -97.213611
4 1939-06-01 20:00:00              waterloo     ...      34.918056  -88.064167

[5 rows x 11 columns]

Sighting days of the unidentified flying object (ufo) between 1949-10-10 and 1960-10-10:
             Date_time     ...       longitude
29 1950-06-01 16:00:00     ...      -89.116667
30 1950-06-01 20:00:00     ...      -79.996111
31 1950-08-01 04:00:00     ...      -85.759444
32 1950-10-01 11:00:00     ...      -82.518889
33 1951-06-01 07:00:00     ...      -99.950000
34 1951-07-01 03:00:00     ...     -117.105278
35 1951-02-03 22:00:00     ...      -72.599444
36 1951-06-03 13:00:00     ...      -77.206944
37 1952-07-01 15:00:00     ...      -95.088611
38 1952-07-01 22:00:00     ...      -83.045833
39 1952-08-01 21:30:00     ...      -82.458611
40 1952-10-01 12:00:00     ...      -94.578333
41 1953-04-01 15:00:00     ...      -71.077778
42 1953-04-01 18:00:00     ...      -71.106111
43 1953-07-01 05:30:00     ...     -104.820833
44 1953-08-01 12:00:00     ...      -90.331111
45 1954-02-01 02:00:00     ...     -147.716389
46 1954-06-01 00:00:00     ...      -95.363056
47 1954-06-01 06:00:00     ...      -76.823333
48 1954-06-01 08:00:00     ...      -89.643611
49 1955-05-01 15:00:00     ...      -71.009167
50 1955-06-01 02:00:00     ...      -95.398056
51 1955-06-01 15:29:00     ...      -84.456944
52 1955-06-01 17:00:00     ...     -122.133056
53 1956-01-01 05:30:00     ...      -80.589722
54 1956-03-01 13:00:00     ...     -122.635556
55 1956-05-01 12:00:00     ...      -81.378611
56 1956-06-01 19:00:00     ...      -94.531667
57 1957-01-01 21:00:00     ...      -96.800000
58 1957-05-01 12:00:00     ...      -81.378611
59 1957-06-01 10:00:00     ...     -106.486389
60 1957-06-01 20:00:00     ...      -73.644444
61 1958-01-01 22:00:00     ...     -102.557778
62 1958-06-01 02:00:00     ...      -78.204167
63 1958-06-01 19:00:00     ...     -122.418333
64 1958-06-01 21:00:00     ...      -74.006389
65 1959-04-01 01:00:00     ...      -80.193889
66 1959-05-01 18:30:00     ...      -82.998889
67 1959-06-01 12:00:00     ...      -73.026111
68 1959-06-01 18:30:00     ...      -84.155556
69 1960-02-01 22:15:00     ...      -93.093056
70 1960-02-01 23:00:00     ...      -82.932222
71 1960-04-01 21:00:00     ...      -95.363056
72 1960-05-01 20:00:00     ...     -110.925833

[44 rows x 11 columns]

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to get all the sighting days of the unidentified flying object (ufo) which are less than or equal to 40 years (365*40 days).
Next: Write a Pandas program to get all the sighting years of the unidentified flying object (ufo) and create the year as column.

What is the difficulty level of this exercise?



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://198.211.115.131/python-exercises/pandas/datetime/pandas-datetime-exercise-5.php