Pandas: Filter by matching multiple values in a given dataframe
Write a Pandas program to filter those records where WHO region matches with multiple values (Africa, Eastern Mediterranean, Europe) from world alcohol consumption dataset.
Test Data:
Year WHO region Country Beverage Types Display Value 0 1986 Western Pacific Viet Nam Wine 0.00 1 1986 Americas Uruguay Other 0.50 2 1985 Africa Cte d'Ivoire Wine 1.62 3 1986 Americas Colombia Beer 4.27 4 1987 Americas Saint Kitts and Nevis Beer 1.98
Sample Solution:
Python Code :
import pandas as pd
# World alcohol consumption data
new_w_a_con = pd.read_csv('world_alcohol.csv')
print("World alcohol consumption sample data:")
print(new_w_a_con.head())
print("\nFilter by matching multiple values in a given dataframe:")
flt_wine = new_w_a_con["WHO region"].isin(["Africa", "Eastern Mediterranean", "Europe"])
print(new_w_a_con[flt_wine])
Sample Output:
World alcohol consumption sample data: Year WHO region ... Beverage Types Display Value 0 1986 Western Pacific ... Wine 0.00 1 1986 Americas ... Other 0.50 2 1985 Africa ... Wine 1.62 3 1986 Americas ... Beer 4.27 4 1987 Americas ... Beer 1.98 [5 rows x 5 columns] Filter by matching multiple values in a given dataframe: Year WHO region ... Beverage Types Display Value 2 1985 Africa ... Wine 1.62 6 1987 Africa ... Wine 0.13 7 1985 Africa ... Spirits 0.39 9 1984 Africa ... Other 6.10 10 1987 Africa ... Wine 0.20 13 1984 Eastern Mediterranean ... Other 0.00 15 1987 Africa ... Wine 0.07 17 1989 Africa ... Beer 2.23 18 1984 Europe ... Spirits 1.62 19 1984 Africa ... Beer 1.08 22 1984 Europe ... Spirits 2.67 23 1984 Europe ... Beer 0.44 24 1985 Africa ... Other NaN 25 1984 Eastern Mediterranean ... Other 0.00 26 1985 Europe ... Wine 1.36 27 1984 Eastern Mediterranean ... Beer 2.22 29 1986 Europe ... Other NaN 30 1986 Africa ... Other 4.48 32 1989 Africa ... Beer 1.60 33 1985 Africa ... Other 0.00 34 1986 Europe ... Wine 0.80 36 1987 Eastern Mediterranean ... Beer 0.07 37 1986 Europe ... Beer 3.04 38 1987 Eastern Mediterranean ... Other 0.00 39 1987 Africa ... Spirits 0.01 40 1987 Europe ... Spirits 1.90 41 1986 Europe ... Beer 6.82 42 1984 Europe ... Spirits 3.06 44 1985 Europe ... Other NaN 45 1989 Africa ... Beer 0.19 .. ... ... ... ... ... 63 1985 Eastern Mediterranean ... Other 0.00 65 1989 Eastern Mediterranean ... Beer 0.00 66 1987 Eastern Mediterranean ... Wine 0.01 67 1989 Africa ... Beer 0.00 68 1989 Africa ... Beer 0.12 69 1986 Africa ... Spirits 0.42 70 1986 Africa ... Spirits 1.02 71 1985 Africa ... Other 0.57 72 1987 Africa ... Other 0.00 73 1986 Eastern Mediterranean ... Other 0.01 75 1989 Eastern Mediterranean ... Other 0.00 76 1985 Africa ... Beer 0.02 77 1985 Africa ... Spirits 0.01 79 1989 Europe ... Other 2.09 80 1985 Africa ... Other 0.84 81 1985 Europe ... Wine 2.54 82 1987 Europe ... Spirits 2.25 83 1986 Europe ... Other NaN 85 1985 Africa ... Wine 0.01 87 1989 Eastern Mediterranean ... Wine 0.01 88 1987 Eastern Mediterranean ... Beer 0.42 89 1986 Eastern Mediterranean ... Wine 0.70 90 1989 Africa ... Wine 0.01 91 1989 Europe ... Beer 4.43 92 1986 Africa ... Spirits 0.00 93 1987 Africa ... Other NaN 94 1985 Europe ... Spirits 3.06 95 1984 Africa ... Other 0.00 96 1985 Europe ... Wine 7.38 98 1984 Africa ... Wine 0.00 [69 rows x 5 columns]
Click to download world_alcohol.csv
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Next: Write a Pandas program to filter those records which not appears in a given list from world alcohol consumption dataset.What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics