w3resource

Pandas: Access every other column from a given dataframe


Write a Pandas program to filter all records starting from the 'Year' column, access every other column from world alcohol consumption dataset.

Test Data:

   Year       WHO region                Country Beverage Types  Display Value
0  1986  Western Pacific               Viet Nam           Wine           0.00
1  1986         Americas                Uruguay          Other           0.50
2  1985           Africa           Cte d'Ivoire           Wine           1.62
3  1986         Americas               Colombia           Beer           4.27
4  1987         Americas  Saint Kitts and Nevis           Beer           1.98   

Sample Solution:

Python Code :

import pandas as pd
# World alcohol consumption data
w_a_con = pd.read_csv('world_alcohol.csv')
print("World alcohol consumption sample data:")
print(w_a_con.head())
print("\nFrom the 'Year' column, access every other column:")
print(w_a_con.loc[:,'Year'::2].head(10))
print("\nAlternate solution:")
print(w_a_con.iloc[:,0::2].head(10))

Sample Output:

World alcohol consumption sample data:
   Year       WHO region      ...      Beverage Types Display Value
0  1986  Western Pacific      ...                Wine          0.00
1  1986         Americas      ...               Other          0.50
2  1985           Africa      ...                Wine          1.62
3  1986         Americas      ...                Beer          4.27
4  1987         Americas      ...                Beer          1.98

[5 rows x 5 columns]

From the 'Year' column, access every other column:
   Year                Country  Display Value
0  1986               Viet Nam           0.00
1  1986                Uruguay           0.50
2  1985           Cte d'Ivoire           1.62
3  1986               Colombia           4.27
4  1987  Saint Kitts and Nevis           1.98
5  1987              Guatemala           0.00
6  1987              Mauritius           0.13
7  1985                 Angola           0.39
8  1986    Antigua and Barbuda           1.55
9  1984                Nigeria           6.10

Alternate solution:
   Year                Country  Display Value
0  1986               Viet Nam           0.00
1  1986                Uruguay           0.50
2  1985           Cte d'Ivoire           1.62
3  1986               Colombia           4.27
4  1987  Saint Kitts and Nevis           1.98
5  1987              Guatemala           0.00
6  1987              Mauritius           0.13
7  1985                 Angola           0.39
8  1986    Antigua and Barbuda           1.55
9  1984                Nigeria           6.10

Click to download world_alcohol.csv

Python Code Editor:


Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to filter all columns where all entries present, check which rows and columns has a NaN and finally drop rows with any NaNs from world alcohol consumption dataset.
Next: Write a Pandas program to filter all records starting from the 2nd row, access every 5th row from world alcohol consumption dataset.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.