Pandas: Split the specified dataframe into groups based on customer id and create a list of order date for each group
Write a Pandas program to split the following dataframe into groups based on customer id and create a list of order date for each group.
Test Data:
ord_no purch_amt ord_date customer_id salesman_id 0 70001 150.50 2012-10-05 3005 5002 1 70009 270.65 2012-09-10 3001 5005 2 70002 65.26 2012-10-05 3002 5001 3 70004 110.50 2012-08-17 3009 5003 4 70007 948.50 2012-09-10 3005 5002 5 70005 2400.60 2012-07-27 3007 5001 6 70008 5760.00 2012-09-10 3002 5001 7 70010 1983.43 2012-10-10 3004 5006 8 70003 2480.40 2012-10-10 3009 5003 9 70012 250.45 2012-06-27 3008 5002 10 70011 75.29 2012-08-17 3003 5007 11 70013 3045.60 2012-04-25 3002 5001
Sample Solution:
Python Code :
import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,70009,70002,70004,70007,70005,70008,70010,70003,70012,70011,70013],
'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': ['2012-10-05','2012-09-10','2012-10-05','2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[3001,3001,3005,3001,3005,3001,3005,3001,3005,3001,3005,3005],
'salesman_id': [5002,5005,5001,5003,5002,5001,5001,5006,5003,5002,5007,5001]})
print("Original Orders DataFrame:")
print(df)
result = df.groupby('customer_id')['ord_date'].apply(list)
print("\nGroup on 'customer_id' and display the list of order dates in group wise:")
print(result)
Sample Output:
Original Orders DataFrame: ord_no purch_amt ord_date customer_id salesman_id 0 70001 150.50 2012-10-05 3001 5002 1 70009 270.65 2012-09-10 3001 5005 2 70002 65.26 2012-10-05 3005 5001 3 70004 110.50 2012-08-17 3001 5003 4 70007 948.50 2012-09-10 3005 5002 5 70005 2400.60 2012-07-27 3001 5001 6 70008 5760.00 2012-09-10 3005 5001 7 70010 1983.43 2012-10-10 3001 5006 8 70003 2480.40 2012-10-10 3005 5003 9 70012 250.45 2012-06-27 3001 5002 10 70011 75.29 2012-08-17 3005 5007 11 70013 3045.60 2012-04-25 3005 5001 Group on 'customer_id' and display the list of order dates in group wise: customer_id 3001 [2012-10-05, 2012-09-10, 2012-08-17, 2012-07-2... 3005 [2012-10-05, 2012-09-10, 2012-09-10, 2012-10-1... Name: ord_date, dtype: object
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to split a dataset to group by two columns and then sort the aggregated results within the groups.
Next: Write a Pandas program to split the following dataframe into groups and calculate monthly purchase amount.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics