w3resource

Pandas: Split the specified dataframe into groups, group by month and year based on order date and find the total purchase amount year wise, month wise


Write a Pandas program to split the following dataframe into groups, group by month and year based on order date and find the total purchase amount year wise, month wise.

Test Data:

    ord_no  purch_amt    ord_date  customer_id  salesman_id
0    70001     150.50  05-10-2012         3001         5002
1    70009     270.65  09-10-2012         3001         5005
2    70002      65.26  05-10-2012         3005         5001
3    70004     110.50  08-17-2012         3001         5003
4    70007     948.50  10-09-2012         3005         5002
5    70005    2400.60  07-27-2012         3001         5001
6    70008    5760.00  10-09-2012         3005         5001
7    70010    1983.43  10-10-2012         3001         5006
8    70003    2480.40  10-10-2012         3005         5003
9    70012     250.45  06-17-2012         3001         5002
10   70011      75.29  07-08-2012         3005         5007
11   70013    3045.60  04-25-2012         3005         5001

Sample Solution:

Python Code :

import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,70009,70002,70004,70007,70005,70008,70010,70003,70012,70011,70013],
'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': ['05-10-2012','09-10-2012','05-10-2013','08-17-2013','10-09-2013','07-27-2014','10-09-2012','10-10-2012','10-10-2012','06-17-2014','07-08-2012','04-25-2012'],
'customer_id':[3001,3001,3005,3001,3005,3001,3005,3001,3005,3001,3005,3005],
'salesman_id': [5002,5005,5001,5003,5002,5001,5001,5006,5003,5002,5007,5001]})
print("Original Orders DataFrame:")
print(df)
df['ord_date']= pd.to_datetime(df['ord_date']) 
print("\nYear wise Month wise purchase amount:")
result = df.groupby([df['ord_date'].dt.year, df['ord_date'].dt.month]).agg({'purch_amt':sum})
print(result)

Sample Output:

Original Orders DataFrame:
    ord_no  purch_amt    ord_date  customer_id  salesman_id
0    70001     150.50  05-10-2012         3001         5002
1    70009     270.65  09-10-2012         3001         5005
2    70002      65.26  05-10-2013         3005         5001
3    70004     110.50  08-17-2013         3001         5003
4    70007     948.50  10-09-2013         3005         5002
5    70005    2400.60  07-27-2014         3001         5001
6    70008    5760.00  10-09-2012         3005         5001
7    70010    1983.43  10-10-2012         3001         5006
8    70003    2480.40  10-10-2012         3005         5003
9    70012     250.45  06-17-2014         3001         5002
10   70011      75.29  07-08-2012         3005         5007
11   70013    3045.60  04-25-2012         3005         5001

Year wise Month wise purchase amount:
                   purch_amt
ord_date ord_date           
2012     4           3045.60
         5            150.50
         7             75.29
         9            270.65
         10         10223.83
2013     5             65.26
         8            110.50
         10           948.50
2014     6            250.45
         7           2400.60

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to split the following dataframe into groups and calculate monthly purchase amount.
Next: Write a Pandas program to split the following dataframe into groups based on first column and set other column values into a list of values.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.