Pandas: Split the specified dataframe into groups based on all columns and calculate Groupby value counts on the dataframe
Write a Pandas program to split the following dataframe into groups based on all columns and calculate GroupBy value counts on the dataframe.
Test Data:
id type book 0 1 10 Math 1 2 15 English 2 1 11 Physics 3 1 20 Math 4 2 21 English 5 1 12 Physics 6 2 14 English
Sample Solution:
Python Code :
import pandas as pd
df = pd.DataFrame( {'id' : [1, 2, 1, 1, 2, 1, 2],
'type' : [10, 15, 11, 20, 21, 12, 14],
'book' : ['Math','English','Physics','Math','English','Physics','English']})
print("Original DataFrame:")
print(df)
result = df.groupby(['id', 'type', 'book']).size().unstack(fill_value=0)
print("\nResult:")
print(result)
Sample Output:
Original DataFrame: id type book 0 1 10 Math 1 2 15 English 2 1 11 Physics 3 1 20 Math 4 2 21 English 5 1 12 Physics 6 2 14 English Result: book English Math Physics id type 1 10 0 1 0 11 0 0 1 12 0 0 1 20 0 1 0 2 14 1 0 0 15 1 0 0 21 1 0 0
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to split the following dataframe into groups based on first column and set other column values into a list of values.
Next: Write a Pandas program to split the following dataframe into groups and count unique values of ‘value’ column.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics