w3resource

Pandas: Split the specified dataframe into groups based on all columns and calculate Groupby value counts on the dataframe


Write a Pandas program to split the following dataframe into groups based on all columns and calculate GroupBy value counts on the dataframe.

Test Data:

   id  type     book
0   1    10     Math
1   2    15  English
2   1    11  Physics
3   1    20     Math
4   2    21  English
5   1    12  Physics
6   2    14  English

Sample Solution:

Python Code :

import pandas as pd
df = pd.DataFrame( {'id' : [1, 2, 1, 1, 2, 1, 2], 
                    'type' : [10, 15, 11, 20, 21, 12, 14], 
                    'book' : ['Math','English','Physics','Math','English','Physics','English']})

print("Original DataFrame:")
print(df)
result = df.groupby(['id', 'type', 'book']).size().unstack(fill_value=0)
print("\nResult:")
print(result)

Sample Output:

Original DataFrame:
   id  type     book
0   1    10     Math
1   2    15  English
2   1    11  Physics
3   1    20     Math
4   2    21  English
5   1    12  Physics
6   2    14  English

Result:
book     English  Math  Physics
id type                        
1  10          0     1        0
   11          0     0        1
   12          0     0        1
   20          0     1        0
2  14          1     0        0
   15          1     0        0
   21          1     0        0

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to split the following dataframe into groups based on first column and set other column values into a list of values.
Next: Write a Pandas program to split the following dataframe into groups and count unique values of ‘value’ column.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.