Pandas: Split a specified datasets into groups on customer id and calculate the number of customers starting with 'C', the list of all products
Write a Pandas program to split the following datasets into groups on customer id and calculate the number of customers starting with 'C', the list of all products and the difference of maximum purchase amount and minimum purchase amount.
Test Data:
ord_no purch_amt ord_date customer_id salesman_id 0 70001 150.50 05-10-2012 C3001 5002 1 70009 270.65 09-10-2012 C3001 5005 2 70002 65.26 05-10-2012 D3005 5001 3 70004 110.50 08-17-2012 D3001 5003 4 70007 948.50 10-09-2012 C3005 5002 5 70005 2400.60 07-27-2012 D3001 5001 6 70008 5760.00 10-09-2012 C3005 5001 7 70010 1983.43 10-10-2012 D3001 5006 8 70003 2480.40 10-10-2012 D3005 5003 9 70012 250.45 06-17-2012 C3001 5002 10 70011 75.29 07-08-2012 D3005 5007 11 70013 3045.60 04-25-2012 D3005 5001
Sample Solution:
Python Code :
import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,70009,70002,70004,70007,70005,70008,70010,70003,70012,70011,70013],
'purch_amt':[150.5, 270.65, 65.26, 110.5, 948.5, 2400.6, 5760, 1983.43, 2480.4, 250.45, 75.29, 3045.6],
'ord_date': ['05-10-2012','09-10-2012','05-10-2012','08-17-2012','10-09-2012','07-27-2012','10-09-2012','10-10-2012','10-10-2012','06-17-2012','07-08-2012','04-25-2012'],
'customer_id':['C3001','C3001','D3005','D3001','C3005','D3001','C3005','D3001','D3005','C3001','D3005','D3005'],
'salesman_id': [5002,5005,5001,5003,5002,5001,5001,5006,5003,5002,5007,5001]})
print("Original Orders DataFrame:")
print(df)
def customer_id_C(x):
return (x.str[0] == 'C').sum()
result = df.groupby(['salesman_id'])\
.agg(customer_id_start_C = ('customer_id', customer_id_C),
customer_id_list = ('customer_id', lambda x: ', '.join(x)),
purchase_amt_gap = ('purch_amt', lambda x: x.max()-x.min())
)
print("\nNumber of customers starting with ‘C’, the list of all products and the difference of maximum purchase amount and minimum purchase amount:")
print(result)
Sample Output:
Original Orders DataFrame: ord_no purch_amt ord_date customer_id salesman_id 0 70001 150.50 05-10-2012 C3001 5002 1 70009 270.65 09-10-2012 C3001 5005 2 70002 65.26 05-10-2012 D3005 5001 3 70004 110.50 08-17-2012 D3001 5003 4 70007 948.50 10-09-2012 C3005 5002 5 70005 2400.60 07-27-2012 D3001 5001 6 70008 5760.00 10-09-2012 C3005 5001 7 70010 1983.43 10-10-2012 D3001 5006 8 70003 2480.40 10-10-2012 D3005 5003 9 70012 250.45 06-17-2012 C3001 5002 10 70011 75.29 07-08-2012 D3005 5007 11 70013 3045.60 04-25-2012 D3005 5001 Number of customers starting with ‘C’, the list of all products and the difference of maximum purchase amount and minimum purchase amount: customer_id_start_C customer_id_list purchase_amt_gap salesman_id 5001 1 D3005, D3001, C3005, D3005 5694.74 5002 3 C3001, C3005, C3001 798.00 5003 0 D3001, D3005 2369.90 5005 1 C3001 0.00 5006 0 D3001 0.00 5007 0 D3005 0.00
Note: Run on Spyder Python 3.7.1
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Next: Write a Pandas program to split the following datasets into groups on customer_id to summarize purch_amt and calculate percentage of purch_amt in each group.What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics