Pandas: Change the name of an aggregated metric
Write a Pandas program to split a dataset, group by one column and get mean, min, and max values by group, also change the column name of the aggregated metric. Using the following dataset find the mean, min, and max values of purchase amount (purch_amt) group by customer id (customer_id).
Test Data:
school class name date_Of_Birth age height weight address S1 s001 V Alberto Franco 15/05/2002 12 173 35 street1 S2 s002 V Gino Mcneill 17/05/2002 12 192 32 street2 S3 s003 VI Ryan Parkes 16/02/1999 13 186 33 street3 S4 s001 VI Eesha Hinton 25/09/1998 13 167 30 street1 S5 s002 V Gino Mcneill 11/05/2002 14 151 31 street2 S6 s004 VI David Parkes 15/09/1997 12 159 32 street4
Sample Solution:
Python Code :
import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'school_code': ['s001','s002','s003','s001','s002','s004'],
'class': ['V', 'V', 'VI', 'VI', 'V', 'VI'],
'name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Gino Mcneill', 'David Parkes'],
'date_Of_Birth ': ['15/05/2002','17/05/2002','16/02/1999','25/09/1998','11/05/2002','15/09/1997'],
'age': [12, 12, 13, 13, 14, 12],
'height': [173, 192, 186, 167, 151, 159],
'weight': [35, 32, 33, 30, 31, 32],
'address': ['street1', 'street2', 'street3', 'street1', 'street2', 'street4']},
index=['S1', 'S2', 'S3', 'S4', 'S5', 'S6'])
print("Original DataFrame:")
print(df)
print('\nChange the name of an aggregated metric:')
grouped_single = df.groupby('school_code').agg({'age': [("mean_age","mean"), ("min_age", "min"), ("max_age","max")]})
print(grouped_single)
Sample Output:
Original DataFrame: school_code class name ... height weight address S1 s001 V Alberto Franco ... 173 35 street1 S2 s002 V Gino Mcneill ... 192 32 street2 S3 s003 VI Ryan Parkes ... 186 33 street3 S4 s001 VI Eesha Hinton ... 167 30 street1 S5 s002 V Gino Mcneill ... 151 31 street2 S6 s004 VI David Parkes ... 159 32 street4 [6 rows x 8 columns] Change the name of an aggregated metric: age mean_age min_age max_age school_code s001 12.5 12 13 s002 13.0 12 14 s003 13.0 13 13 s004 12.0 12 12
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to split the following datasets into groups on customer_id to summarize purch_amt and calculate percentage of purch_amt in each group.
Next: Write a Pandas program to split a given dataset, group by two columns and convert other columns of the dataframe into a dictionary with column header as key.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics