w3resource

Pandas: Split a dataset to group by two columns and then sort the aggregated results within the groups

Pandas Grouping and Aggregating: Split-Apply-Combine Exercise-9 with Solution

Write a Pandas program to split a dataset to group by two columns and then sort the aggregated results within the groups.

In the following dataset group on 'customer_id', 'salesman_id' and then sort sum of purch_amt within the groups

Test Data:

    ord_no  purch_amt    ord_date  customer_id  salesman_id
0    70001     150.50  2012-10-05         3005         5002
1    70009     270.65  2012-09-10         3001         5005
2    70002      65.26  2012-10-05         3002         5001
3    70004     110.50  2012-08-17         3009         5003
4    70007     948.50  2012-09-10         3005         5002
5    70005    2400.60  2012-07-27         3007         5001
6    70008    5760.00  2012-09-10         3002         5001
7    70010    1983.43  2012-10-10         3004         5006
8    70003    2480.40  2012-10-10         3009         5003
9    70012     250.45  2012-06-27         3008         5002
10   70011      75.29  2012-08-17         3003         5007
11   70013    3045.60  2012-04-25         3002         5001

Sample Solution:

Python Code :

import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,70009,70002,70004,70007,70005,70008,70010,70003,70012,70011,70013],
'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': ['2012-10-05','2012-09-10','2012-10-05','2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[3001,3001,3005,3001,3005,3001,3005,3001,3005,3001,3005,3005],
'salesman_id': [5002,5005,5001,5003,5002,5001,5001,5006,5003,5002,5007,5001]})
print("Original Orders DataFrame:")
print(df)
df_agg = df.groupby(['customer_id','salesman_id']).agg({'purch_amt':sum})
result = df_agg['purch_amt'].groupby(level=0, group_keys=False)
print("\nGroup on 'customer_id', 'salesman_id' and then sort sum of purch_amt within the groups:")
print(result.nlargest())

Sample Output:

Original Orders DataFrame:
    ord_no  purch_amt    ord_date  customer_id  salesman_id
0    70001     150.50  2012-10-05         3001         5002
1    70009     270.65  2012-09-10         3001         5005
2    70002      65.26  2012-10-05         3005         5001
3    70004     110.50  2012-08-17         3001         5003
4    70007     948.50  2012-09-10         3005         5002
5    70005    2400.60  2012-07-27         3001         5001
6    70008    5760.00  2012-09-10         3005         5001
7    70010    1983.43  2012-10-10         3001         5006
8    70003    2480.40  2012-10-10         3005         5003
9    70012     250.45  2012-06-27         3001         5002
10   70011      75.29  2012-08-17         3005         5007
11   70013    3045.60  2012-04-25         3005         5001

Group on 'customer_id', 'salesman_id' and then sort sum of purch_amt within the groups:
customer_id  salesman_id
3001         5001           2400.60
             5006           1983.43
             5002            400.95
             5005            270.65
             5003            110.50
3005         5001           8870.86
             5003           2480.40
             5002            948.50
             5007             75.29
Name: purch_amt, dtype: float64

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to split a dataset to group by two columns and count by each row.
Next: Write a Pandas program to split the following dataframe into groups based on customer id and create a list of order date for each group.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://198.211.115.131/python-exercises/pandas/groupby/python-pandas-groupby-exercise-9.php