Pandas: Construct a DataFrame using the MultiIndex levels
Pandas Indexing: Exercise-13 with Solution
Write a Pandas program to construct a DataFrame using the MultiIndex levels as the column and index.
Sample Solution:
Python Code :
import pandas as pd
import numpy as np
sales_arrays = [['sale1', 'sale1', 'sale2', 'sale2', 'sale3', 'sale3', 'sale4', 'sale4'],
['city1', 'city2', 'city1', 'city2', 'city1', 'city2', 'city1', 'city2']]
sales_tuples = list(zip(*sales_arrays))
print("Create a MultiIndex:")
sales_index = pd.MultiIndex.from_tuples(sales_tuples, names=['sale', 'city'])
print(sales_tuples)
print("\nConstruct a Dataframe using the said MultiIndex levels: ")
df = pd.DataFrame(np.random.randn(8, 5), index=sales_index)
print(df)
Sample Output:
Create a MultiIndex: [('sale1', 'city1'), ('sale1', 'city2'), ('sale2', 'city1'), ('sale2', 'city2'), ('sale3', 'city1'), ('sale3', 'city2'), ('sale4', 'city1'), ('sale4', 'city2')] Construct a Dataframe using the said MultiIndex levels: 0 1 2 3 4 sale city sale1 city1 -1.020550 -0.809408 0.911425 0.059023 0.495317 city2 -1.208514 0.039022 0.088428 -0.899280 1.722276 sale2 city1 0.510427 -0.396097 -2.076445 1.080586 1.268495 city2 -1.158077 -0.892657 1.221519 -0.802645 0.095342 sale3 city1 1.535934 0.432627 -1.307655 0.031096 -0.060850 city2 0.601156 0.202661 -1.469705 -1.787885 1.285210 sale4 city1 0.455104 0.395752 0.115163 1.188649 0.415450 city2 0.218054 -0.722397 0.590288 -1.347249 -0.223215
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to construct a series using the MultiIndex levels as the column and index.
Next: Write a Pandas program to extract a single row, rows and a specific value from a MultiIndex levels DataFrame.What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/pandas/index/pandas-indexing-exercise-13.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics