w3resource

Pandas: Sort a MultiIndex of a DataFrame and on various index levels

Pandas Indexing: Exercise-16 with Solution

Write a Pandas program to sort a MultiIndex of a DataFrame. Also sort on various levels of index.

Sample Solution:

Python Code :

import pandas as pd 
import numpy as np
sales_arrays = [['sale1', 'sale1', 'sale3', 'sale3', 'sale2', 'sale2', 'sale4', 'sale4'],
          ['city1', 'city2', 'city1', 'city2', 'city1', 'city2', 'city1', 'city2']]
sales_tuples = list(zip(*sales_arrays))
sales_index = pd.MultiIndex.from_tuples(sales_tuples, names=['sale', 'city'])
print(sales_tuples)
print("\nConstruct a Dataframe using the said MultiIndex levels: ")
df = pd.DataFrame(np.random.randn(8, 5), index=sales_index)
print(df)
print("\nSort on MultiIndex DataFrame:")
df1 = df.sort_index()
print("\nSort on Index level=0 of the DataFrame:")
df2 = df.sort_index(level=0)
print(df2)
print("\nSort on Index level=1 of the DataFrame:")
df2 = df.sort_index(level=1)
print(df2)
print("\nPass a level name to sort the DataFrame:")
df3 = df.sort_index(level="city")
print(df3)  

Sample Output:

[('sale1', 'city1'), ('sale1', 'city2'), ('sale3', 'city1'), ('sale3', 'city2'), ('sale2', 'city1'), ('sale2', 'city2'), ('sale4', 'city1'), ('sale4', 'city2')]

Construct a Dataframe using the said MultiIndex levels: 
                    0         1         2         3         4
sale  city                                                   
sale1 city1 -0.089370  0.705290 -0.666095  1.123766  0.913882
      city2  1.191204  0.109838 -0.103562 -0.184452 -1.955661
sale3 city1  0.545379  0.463709  0.024852  0.986675  0.615907
      city2 -0.258394 -0.453250 -0.536596 -0.219055  0.430811
sale2 city1 -1.073173  0.555573 -0.112394 -0.100727 -0.241135
      city2 -0.876008  0.919629  0.296234 -0.507162 -1.813040
sale4 city1  0.515350  0.683498  0.405508  2.010065  0.170758
      city2  0.695778 -2.036874 -0.543257  0.601770 -0.539135

Sort on MultiIndex DataFrame:

Sort on Index level=0 of the DataFrame:
                    0         1         2         3         4
sale  city                                                   
sale1 city1 -0.089370  0.705290 -0.666095  1.123766  0.913882
      city2  1.191204  0.109838 -0.103562 -0.184452 -1.955661
sale2 city1 -1.073173  0.555573 -0.112394 -0.100727 -0.241135
      city2 -0.876008  0.919629  0.296234 -0.507162 -1.813040
sale3 city1  0.545379  0.463709  0.024852  0.986675  0.615907
      city2 -0.258394 -0.453250 -0.536596 -0.219055  0.430811
sale4 city1  0.515350  0.683498  0.405508  2.010065  0.170758
      city2  0.695778 -2.036874 -0.543257  0.601770 -0.539135

Sort on Index level=1 of the DataFrame:
                    0         1         2         3         4
sale  city                                                   
sale1 city1 -0.089370  0.705290 -0.666095  1.123766  0.913882
sale2 city1 -1.073173  0.555573 -0.112394 -0.100727 -0.241135
sale3 city1  0.545379  0.463709  0.024852  0.986675  0.615907
sale4 city1  0.515350  0.683498  0.405508  2.010065  0.170758
sale1 city2  1.191204  0.109838 -0.103562 -0.184452 -1.955661
sale2 city2 -0.876008  0.919629  0.296234 -0.507162 -1.813040
sale3 city2 -0.258394 -0.453250 -0.536596 -0.219055  0.430811
sale4 city2  0.695778 -2.036874 -0.543257  0.601770 -0.539135

Pass a level name to sort the DataFrame:
                    0         1         2         3         4
sale  city                                                   
sale1 city1 -0.089370  0.705290 -0.666095  1.123766  0.913882
sale2 city1 -1.073173  0.555573 -0.112394 -0.100727 -0.241135
sale3 city1  0.545379  0.463709  0.024852  0.986675  0.615907
sale4 city1  0.515350  0.683498  0.405508  2.010065  0.170758
sale1 city2  1.191204  0.109838 -0.103562 -0.184452 -1.955661
sale2 city2 -0.876008  0.919629  0.296234 -0.507162 -1.813040
sale3 city2 -0.258394 -0.453250 -0.536596 -0.219055  0.430811
sale4 city2  0.695778 -2.036874 -0.543257  0.601770 -0.539135

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to rename names of columns and specific labels of the Main Index of the MultiIndex dataframe.

Next: Write a Pandas program to extract elements in the given positional indices along an axis of a dataframe.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://198.211.115.131/python-exercises/pandas/index/pandas-indexing-exercise-16.php