Pandas: Detect missing values of a given DataFrame
Pandas Handling Missing Values: Exercise-1 with Solution
Write a Pandas program to detect missing values of a given DataFrame. Display True or False.
Test Data:
ord_no purch_amt ord_date customer_id salesman_id 0 70001.0 150.50 2012-10-05 3002 5002.0 1 NaN 270.65 2012-09-10 3001 5003.0 2 70002.0 65.26 NaN 3001 5001.0 3 70004.0 110.50 2012-08-17 3003 NaN 4 NaN 948.50 2012-09-10 3002 5002.0 5 70005.0 2400.60 2012-07-27 3001 5001.0 6 NaN 5760.00 2012-09-10 3001 5001.0 7 70010.0 1983.43 2012-10-10 3004 NaN 8 70003.0 2480.40 2012-10-10 3003 5003.0 9 70012.0 250.45 2012-06-27 3002 5002.0 10 NaN 75.29 2012-08-17 3001 5003.0 11 70013.0 3045.60 2012-04-25 3001 NaN
Sample Solution:
Python Code :
import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,np.nan,70002,70004,np.nan,70005,np.nan,70010,70003,70012,np.nan,70013],
'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': ['2012-10-05','2012-09-10',np.nan,'2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[3002,3001,3001,3003,3002,3001,3001,3004,3003,3002,3001,3001],
'salesman_id':[5002,5003,5001,np.nan,5002,5001,5001,np.nan,5003,5002,5003,np.nan]})
print("Original Orders DataFrame:")
print(df)
print("\nMissing values of the said dataframe:")
print(df.isna())
Sample Output:
Original Orders DataFrame: ord_no purch_amt ord_date customer_id salesman_id 0 70001.0 150.50 2012-10-05 3002 5002.0 1 NaN 270.65 2012-09-10 3001 5003.0 2 70002.0 65.26 NaN 3001 5001.0 3 70004.0 110.50 2012-08-17 3003 NaN 4 NaN 948.50 2012-09-10 3002 5002.0 5 70005.0 2400.60 2012-07-27 3001 5001.0 6 NaN 5760.00 2012-09-10 3001 5001.0 7 70010.0 1983.43 2012-10-10 3004 NaN 8 70003.0 2480.40 2012-10-10 3003 5003.0 9 70012.0 250.45 2012-06-27 3002 5002.0 10 NaN 75.29 2012-08-17 3001 5003.0 11 70013.0 3045.60 2012-04-25 3001 NaN Missing values of the said dataframe: ord_no purch_amt ord_date customer_id salesman_id 0 False False False False False 1 True False False False False 2 False False True False False 3 False False False False True 4 True False False False False 5 False False False False False 6 True False False False False 7 False False False False True 8 False False False False False 9 False False False False False 10 True False False False False 11 False False False False True
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Python Pandas Handling Missing Values Exercises Home.
Next: Write a Pandas program to identify the column(s) of a given DataFrame which have at least one missing value.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/pandas/missing-values/python-pandas-missing-values-exercise-1.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics