w3resource

Pandas: Replace NaNs with a single constant value

Pandas Handling Missing Values: Exercise-12 with Solution

Write a Pandas program to replace NaNs with a single constant value in specified columns in a DataFrame.

Test Data:

     ord_no  purch_amt    ord_date  customer_id
0       NaN        NaN         NaN          NaN
1       NaN     270.65  2012-09-10       3001.0
2   70002.0      65.26         NaN       3001.0
3       NaN        NaN         NaN          NaN
4       NaN     948.50  2012-09-10       3002.0
5   70005.0    2400.60  2012-07-27       3001.0
6       NaN    5760.00  2012-09-10       3001.0
7   70010.0    1983.43  2012-10-10       3004.0
8   70003.0    2480.40  2012-10-10       3003.0
9   70012.0     250.45  2012-06-27       3002.0
10      NaN      75.29  2012-08-17       3001.0
11      NaN        NaN         NaN          NaN

Sample Solution:

Python Code :

import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,np.nan,70002,70004,np.nan,70005,np.nan,70010,70003,70012,np.nan,70013],
'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': ['2012-10-05','2012-09-10',np.nan,'2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[3002,3001,3001,3003,3002,3001,3001,3004,3003,3002,3001,3001],
'salesman_id':[5002,5003,5001,np.nan,5002,5001,5001,np.nan,5003,5002,5003,np.nan]})
print("Original Orders DataFrame:")
print(df)
print("\nReplace NaNs with a single constant value:")
result = df['ord_no'].fillna(0, inplace=False)
print(result)

Sample Output:

Original Orders DataFrame:
     ord_no  purch_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50  2012-10-05         3002       5002.0
1       NaN     270.65  2012-09-10         3001       5003.0
2   70002.0      65.26         NaN         3001       5001.0
3   70004.0     110.50  2012-08-17         3003          NaN
4       NaN     948.50  2012-09-10         3002       5002.0
5   70005.0    2400.60  2012-07-27         3001       5001.0
6       NaN    5760.00  2012-09-10         3001       5001.0
7   70010.0    1983.43  2012-10-10         3004          NaN
8   70003.0    2480.40  2012-10-10         3003       5003.0
9   70012.0     250.45  2012-06-27         3002       5002.0
10      NaN      75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60  2012-04-25         3001          NaN

Replace NaNs with a single constant value:
0     70001.0
1         0.0
2     70002.0
3     70004.0
4         0.0
5     70005.0
6         0.0
7     70010.0
8     70003.0
9     70012.0
10        0.0
11    70013.0
Name: ord_no, dtype: float64

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to calculate the total number of missing values in a DataFrame.
Next: Write a Pandas program to replace NaNs with the value from the previous row or the next row in a given DataFrame.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://198.211.115.131/python-exercises/pandas/missing-values/python-pandas-missing-values-exercise-12.php