Pandas: Drop the rows where all elements are missing
Pandas Handling Missing Values: Exercise-7 with Solution
Write a Pandas program to drop the rows where all elements are missing in a given DataFrame.
Test Data:
ord_no purch_amt ord_date customer_id 0 NaN NaN NaN NaN 1 NaN 270.65 2012-09-10 3001.0 2 70002.0 65.26 NaN 3001.0 3 70004.0 110.50 2012-08-17 3003.0 4 NaN 948.50 2012-09-10 3002.0 5 70005.0 2400.60 2012-07-27 3001.0 6 NaN 5760.00 2012-09-10 3001.0 7 70010.0 1983.43 2012-10-10 3004.0 8 70003.0 2480.40 2012-10-10 3003.0 9 70012.0 250.45 2012-06-27 3002.0 10 NaN 75.29 2012-08-17 3001.0 11 70013.0 3045.60 2012-04-25 3001.0
Sample Solution:
Python Code :
import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[np.nan,np.nan,70002,70004,np.nan,70005,np.nan,70010,70003,70012,np.nan,70013],
'purch_amt':[np.nan,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': [np.nan,'2012-09-10',np.nan,'2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[np.nan,3001,3001,3003,3002,3001,3001,3004,3003,3002,3001,3001]})
print("Original Orders DataFrame:")
print(df)
print("\nDrop the rows where all elements are missing:")
result = df.dropna(how='all')
print(result)
Sample Output:
Original Orders DataFrame: ord_no purch_amt ord_date customer_id 0 NaN NaN NaN NaN 1 NaN 270.65 2012-09-10 3001.0 2 70002.0 65.26 NaN 3001.0 3 70004.0 110.50 2012-08-17 3003.0 4 NaN 948.50 2012-09-10 3002.0 5 70005.0 2400.60 2012-07-27 3001.0 6 NaN 5760.00 2012-09-10 3001.0 7 70010.0 1983.43 2012-10-10 3004.0 8 70003.0 2480.40 2012-10-10 3003.0 9 70012.0 250.45 2012-06-27 3002.0 10 NaN 75.29 2012-08-17 3001.0 11 70013.0 3045.60 2012-04-25 3001.0 Drop the rows where all elements are missing: ord_no purch_amt ord_date customer_id 1 NaN 270.65 2012-09-10 3001.0 2 70002.0 65.26 NaN 3001.0 3 70004.0 110.50 2012-08-17 3003.0 4 NaN 948.50 2012-09-10 3002.0 5 70005.0 2400.60 2012-07-27 3001.0 6 NaN 5760.00 2012-09-10 3001.0 7 70010.0 1983.43 2012-10-10 3004.0 8 70003.0 2480.40 2012-10-10 3003.0 9 70012.0 250.45 2012-06-27 3002.0 10 NaN 75.29 2012-08-17 3001.0 11 70013.0 3045.60 2012-04-25 3001.0
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to drop the columns where at least one element is missing in a given dataframe.
Next: Write a Pandas program to keep the rows with at least 2 NaN values in a given DataFrame.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/pandas/missing-values/python-pandas-missing-values-exercise-7.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics