Pandas - Apply Different Functions on DataFrame Columns with apply()
Pandas: Custom Function Exercise-5 with Solution
Write a Pandas program that applies different functions on DataFrame columns using apply().
Apply different functions to different columns of a DataFrame by passing a dictionary to apply().
Sample Solution:
Code :
import pandas as pd
# Create a sample DataFrame
df = pd.DataFrame({
'A': [1, 2, 3],
'B': [4, 5, 6],
'C': [7, 8, 9]
})
# Define different custom functions
def add_one(x):
return x + 1
def multiply_by_two(x):
return x * 2
# Apply different functions to columns
df['A'] = df['A'].apply(add_one)
df['B'] = df['B'].apply(multiply_by_two)
# Output the result
print(df)
Output:
A B C 0 2 8 7 1 3 10 8 2 4 12 9
Explanation:
- Created a DataFrame with columns 'A', 'B', 'C'.
- Defined two functions: add_one() and multiply_by_two().
- Applied add_one() to column 'A' and multiply_by_two() to column 'B'.
- Displayed the modified DataFrame.
Python-Pandas Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/pandas/pandas-apply-different-functions-on-dataframe-columns-with-apply.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics