Checking for Duplicate Rows in a Pandas DataFrame
4. Checking Duplicate Rows in a DataFrame
Write a Pandas program to check duplicate rows in a DataFrame.
This exercise shows how to check duplicate rows in a DataFrame using duplicated().
Sample Solution :
Code :
import pandas as pd
# Create a sample DataFrame with duplicate rows
df = pd.DataFrame({
'Name': ['Orville', 'Arturo', 'Ruth', 'Orville'],
'Age': [25, 30, 22, 25],
'Salary': [50000, 60000, 70000, 50000]
})
# Check for duplicate rows
duplicates = df.duplicated()
# Output the result
print(duplicates)
Output:
0 False 1 False 2 False 3 True dtype: bool
Explanation:
- Created a DataFrame with some duplicate rows.
- Used duplicated() to check for duplicate rows.
- Outputted a Boolean Series indicating which rows are duplicates.
For more Practice: Solve these Related Problems:
- Write a Pandas program to check for duplicate rows in a DataFrame and list the indices of the duplicates.
- Write a Pandas program to identify duplicate rows based on a subset of columns and output a summary of duplicates.
- Write a Pandas program to count duplicate rows and visualize the frequency of duplicates per unique row.
- Write a Pandas program to detect duplicate rows and generate a DataFrame that includes an additional column marking duplicate status.
Python-Pandas Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.