w3resource

Merging DataFrames on Multiple Columns with Different Names in Pandas


Pandas: Custom Function Exercise-19 with Solution


Write a Pandas program to merge DataFrames on multiple columns with different names.

In this exercise, we have merged two DataFrames on multiple columns where the columns have different names in each DataFrame.

Sample Solution :

Code :

import pandas as pd

# Create two sample DataFrames with matching values
df1 = pd.DataFrame({
    'Employee_ID': [1, 2, 3],
    'Name': ['Selena', 'Annabel', 'Caeso']  # Matching names with df2
})

df2 = pd.DataFrame({
    'ID': [1, 2, 3],
    'Employee_Name': ['Selena', 'Annabel', 'Caeso'],  # Matching names with df1
    'Salary': [50000, 60000, 70000]
})

# Merge the DataFrames on different column names
merged_df = pd.merge(df1, df2, left_on=['Employee_ID', 'Name'], right_on=['ID', 'Employee_Name'])

# Output the result
print(merged_df)

Output:

   Employee_ID     Name  ID Employee_Name  Salary
0            1   Selena   1        Selena   50000
1            2  Annabel   2       Annabel   60000
2            3    Caeso   3         Caeso   70000

Explanation:

  • The DataFrames df1 and df2 now have matching values for 'Name' and 'Employee_Name'.
  • The merge() function now correctly merges based on left_on=['Employee_ID', 'Name'] and right_on=['ID', 'Employee_Name'].

Python-Pandas Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.