Normalizing numerical data using Min-Max scaling in Pandas
Pandas: Machine Learning Integration Exercise-7 with Solution
Write a Pandas program that normalizes numerical data using Min-Max scaling.
This exercise demonstrates how to normalize numerical features using Min-Max scaling.
Sample Solution :
Code :
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
# Load the dataset
df = pd.read_csv('data.csv')
# Initialize the MinMaxScaler
scaler = MinMaxScaler()
# Apply Min-Max scaling to the 'Age' and 'Salary' columns
df[['Age', 'Salary']] = scaler.fit_transform(df[['Age', 'Salary']])
# Output the scaled dataset
print(df)
Output:
ID Name Age Gender Salary Target 0 1 Sara 0.230769 Female 0.000000 0 1 2 Ophrah 0.615385 Male 0.333333 1 2 3 Torben 0.000000 Male 0.666667 0 3 4 Masaharu 1.000000 Male 1.000000 1 4 5 Kaya NaN Female 0.166667 0 5 6 Abaddon 0.538462 Male NaN 1
Explanation:
- Loaded the dataset using Pandas.
- Initialized the MinMaxScaler from Scikit-learn.
- Applied Min-Max scaling to the 'Age' and 'Salary' columns, transforming them into a range between 0 and 1.
- Displayed the normalized dataset.
Python-Pandas Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics