Scaling Numerical Features Using RobustScaler in Pandas
Pandas: Machine Learning Integration Exercise-15 with Solution
Write a Pandas program to scale numerical features using Scikit-learn's RobustScaler.
This exercise shows how to scale numerical features using Scikit-learn's RobustScaler to reduce the effect of outliers.
Sample Solution :
Code :
import pandas as pd
from sklearn.preprocessing import RobustScaler
# Load the dataset
df = pd.read_csv('data.csv')
# Initialize the RobustScaler
scaler = RobustScaler()
# Apply RobustScaler to the 'Age' and 'Salary' columns
df[['Age', 'Salary']] = scaler.fit_transform(df[['Age', 'Salary']])
# Output the scaled dataset
print(df)
Output:
ID Name Age Gender Salary Target 0 1 Sara -0.8 Female -0.666667 0 1 2 Ophrah 0.2 Male 0.000000 1 2 3 Torben -1.4 Male 0.666667 0 3 4 Masaharu 1.2 Male 1.333333 1 4 5 Kaya NaN Female -0.333333 0 5 6 Abaddon 0.0 Male NaN 1
Explanation:
- Loaded the dataset using Pandas.
- Initialized RobustScaler to scale features while reducing the influence of outliers.
- Applied RobustScaler to the 'Age' and 'Salary' columns.
- Displayed the scaled dataset.
Python-Pandas Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics