Pandas Practice Set-1: Pass a list of data types to only describe certain types of diamonds DataFrame
Pandas Practice Set-1: Exercise-25 with Solution
Write a Pandas program to pass a list of data types to only describe certain types of diamonds DataFrame.
Sample Solution:
Python Code:
import pandas as pd
diamonds = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/diamonds.csv')
print("Original Dataframe:")
print(diamonds.head())
print("\nList of data types to only describe certain types:")
print(diamonds.describe(include=['object', 'float64']))
Sample Output:
Original Dataframe: carat cut color clarity depth table price x y z 0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43 1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31 2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31 3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63 4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 List of data types to only describe certain types: carat cut ... y z count 53940.000000 53940 ... 53940.000000 53940.000000 unique NaN 5 ... NaN NaN top NaN Ideal ... NaN NaN freq NaN 21551 ... NaN NaN mean 0.797940 NaN ... 5.734526 3.538734 std 0.474011 NaN ... 1.142135 0.705699 min 0.200000 NaN ... 0.000000 0.000000 25% 0.400000 NaN ... 4.720000 2.910000 50% 0.700000 NaN ... 5.710000 3.530000 75% 1.040000 NaN ... 6.540000 4.040000 max 5.010000 NaN ... 58.900000 31.800000 [11 rows x 9 columns]
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to pass a list of data types to only describe certain types of diamonds DataFrame.
Next: Write a Pandas program to calculate the mean of each numeric column of diamonds DataFrame..
What is the difficulty level of this exercise?
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/pandas/practice-set1/pandas-practice-set1-exercise-25.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics