Pandas: Replace all the NaN values with Zero's in a column of a dataframe
Pandas: DataFrame Exercise-32 with Solution
Write a Pandas program to replace all the NaN values with Zero's in a column of a dataframe.
Sample data:
Original DataFrame
attempts name qualify score
0 1 Anastasia yes 12.5
1 3 Dima no 9.0
2 2 Katherine yes 16.5
3 3 James no NaN
4 2 Emily no 9.0
5 3 Michael yes 20.0
6 1 Matthew yes 14.5
7 1 Laura no NaN
8 2 Kevin no 8.0
9 1 Jonas yes 19.0
New DataFrame replacing all NaN with 0:
attempts name qualify score
0 1 Anastasia yes 12.5
1 3 Dima no 9.0
2 2 Katherine yes 16.5
3 3 James no 0.0
4 2 Emily no 9.0
5 3 Michael yes 20.0
6 1 Matthew yes 14.5
7 1 Laura no 0.0
8 2 Kevin no 8.0
9 1 Jonas yes 19.0
Sample Solution :
Python Code :
import pandas as pd
import numpy as np
exam_data = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],
'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']}
df = pd.DataFrame(exam_data)
print("Original DataFrame")
print(df)
df = df.fillna(0)
print("\nNew DataFrame replacing all NaN with 0:")
print(df)
Sample Output:
Original DataFrame attempts name qualify score 0 1 Anastasia yes 12.5 1 3 Dima no 9.0 2 2 Katherine yes 16.5 3 3 James no NaN 4 2 Emily no 9.0 5 3 Michael yes 20.0 6 1 Matthew yes 14.5 7 1 Laura no NaN 8 2 Kevin no 8.0 9 1 Jonas yes 19.0 New DataFrame replacing all NaN with 0: attempts name qualify score 0 1 Anastasia yes 12.5 1 3 Dima no 9.0 2 2 Katherine yes 16.5 3 3 James no 0.0 4 2 Emily no 9.0 5 3 Michael yes 20.0 6 1 Matthew yes 14.5 7 1 Laura no 0.0 8 2 Kevin no 8.0 9 1 Jonas yes 19.0
Explanation:
The above code creates a Pandas DataFrame called ‘df’ from a dictionary called ‘exam_data’ that contains information about students and their exam scores. Some of the students have missing scores, which are represented as np.nan values.
df = df.fillna(0): The fillna() method is then used to fill in these missing values with 0.
Finally the resulting DataFrame is printed to the console using print() function.
Python-Pandas Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to select a row of series/dataframe by given integer index.
Next: Write a Pandas program to convert index in a column of the given dataframe.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/pandas/python-pandas-data-frame-exercise-32.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics