w3resource

Pandas DataFrame: Count the NaN values in one or more columns in DataFrame

Pandas: DataFrame Exercise-35 with Solution

Write a Pandas program to count the NaN values in one or more columns in DataFrame.

Sample data:
Original DataFrame
attempts name qualify score
0 1 Anastasia yes 12.5
1 3 Dima no 9.0
2 2 Katherine yes 16.5
3 3 James no NaN
4 2 Emily no 9.0
5 3 Michael yes 20.0
6 1 Matthew yes 14.5
7 1 Laura no NaN
8 2 Kevin no 8.0
9 1 Jonas yes 19.0
Number of NaN values in one or more columns:
2

Sample Solution :

Python Code :

import pandas as pd
import numpy as np
exam_data = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],
        'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
        'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
        'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']}
df = pd.DataFrame(exam_data)
print("Original DataFrame")
print(df)
print("\nNumber of NaN values in one or more columns:")
print(df.isnull().values.sum())

Sample Output:

      Original DataFrame
   attempts       name qualify  score
0         1  Anastasia     yes   12.5
1         3       Dima      no    9.0
2         2  Katherine     yes   16.5
3         3      James      no    NaN
4         2      Emily      no    9.0
5         3    Michael     yes   20.0
6         1    Matthew     yes   14.5
7         1      Laura      no    NaN
8         2      Kevin      no    8.0
9         1      Jonas     yes   19.0

Number of NaN values in one or more columns:
2            

Explanation:

The above code creates a pandas DataFrame ‘df’ from a dictionary ‘exam_data’ containing information about some exam scores.

df.isnull().values.sum(): This code uses the isnull() function to check which values in the DataFrame are null or NaN, and returns a DataFrame containing the same shape as ‘df’ with True for missing values and False for non-missing values. The values attribute is used to extract the values of the resulting DataFrame and the sum() function is applied to the values to get the total count of missing values in the original DataFrame.

Finally print() function prints the total number of missing values in the DataFrame.

Python-Pandas Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to set a given value for particular cell in DataFrame using index value.
Next: Write a Pandas program to drop a list of rows from a specified DataFrame.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://198.211.115.131/python-exercises/pandas/python-pandas-data-frame-exercise-35.php