Pandas: Add a prefix or suffix to all columns of a given DataFrame
Pandas: DataFrame Exercise-64 with Solution
Write a Pandas program to add a prefix or suffix to all columns of a given DataFrame.
Sample Solution :
Python Code :
import pandas as pd
df = pd.DataFrame({'W':[68,75,86,80,66],'X':[78,85,96,80,86], 'Y':[84,94,89,83,86],'Z':[86,97,96,72,83]});
print("Original DataFrame")
print(df)
print("\nAdd prefix:")
print(df.add_prefix("A_"))
print("\nAdd suffix:")
print(df.add_suffix("_1"))
Sample Output:
Original DataFrame W X Y Z 0 68 78 84 86 1 75 85 94 97 2 86 96 89 96 3 80 80 83 72 4 66 86 86 83 Add prefix: A_W A_X A_Y A_Z 0 68 78 84 86 1 75 85 94 97 2 86 96 89 96 3 80 80 83 72 4 66 86 86 83 Add suffix: W_1 X_1 Y_1 Z_1 0 68 78 84 86 1 75 85 94 97 2 86 96 89 96 3 80 80 83 72 4 66 86 86 83
Python-Pandas Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to remove last n rows of a given DataFrame.
Next: Write a Pandas program to reverse order (rows, columns) of a given DataFrame.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/pandas/python-pandas-data-frame-exercise-64.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics