w3resource

Pandas: Combine together day and intraday offsets

Pandas Time Series: Exercise-24 with Solution

Write a Pandas program to generate time series combining day and intraday offsets intervals.

Sample Solution:

Python Code :

import pandas as pd
dateset1 = pd.date_range('2029-01-01 00:00:00', periods=20, freq='3h10min')
print("Time series with frequency 3h10min:")
print(dateset1)
dateset2 = pd.date_range('2029-01-01 00:00:00', periods=20, freq='1D10min20U')
print("\nTime series with frequency 1 day 10 minutes and 20 microseconds:")
print(dateset2)

Sample Output:

Time series with frequency 3h10min:
DatetimeIndex(['2029-01-01 00:00:00', '2029-01-01 03:10:00',
               '2029-01-01 06:20:00', '2029-01-01 09:30:00',
               '2029-01-01 12:40:00', '2029-01-01 15:50:00',
               '2029-01-01 19:00:00', '2029-01-01 22:10:00',
               '2029-01-02 01:20:00', '2029-01-02 04:30:00',
               '2029-01-02 07:40:00', '2029-01-02 10:50:00',
               '2029-01-02 14:00:00', '2029-01-02 17:10:00',
               '2029-01-02 20:20:00', '2029-01-02 23:30:00',
               '2029-01-03 02:40:00', '2029-01-03 05:50:00',
               '2029-01-03 09:00:00', '2029-01-03 12:10:00'],
              dtype='datetime64[ns]', freq='190T')

Time series with frequency 1 day 10 minutes and 20 microseconds:
DatetimeIndex([       '2029-01-01 00:00:00', '2029-01-02 00:10:00.000020',
               '2029-01-03 00:20:00.000040', '2029-01-04 00:30:00.000060',
               '2029-01-05 00:40:00.000080', '2029-01-06 00:50:00.000100',
               '2029-01-07 01:00:00.000120', '2029-01-08 01:10:00.000140',
               '2029-01-09 01:20:00.000160', '2029-01-10 01:30:00.000180',
               '2029-01-11 01:40:00.000200', '2029-01-12 01:50:00.000220',
               '2029-01-13 02:00:00.000240', '2029-01-14 02:10:00.000260',
               '2029-01-15 02:20:00.000280', '2029-01-16 02:30:00.000300',
               '2029-01-17 02:40:00.000320', '2029-01-18 02:50:00.000340',
               '2029-01-19 03:00:00.000360', '2029-01-20 03:10:00.000380'],
              dtype='datetime64[ns]', freq='87000000020U')

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to generate sequences of fixed-frequency dates and time spans intervals.
Next: Write a Pandas program to extract the day name from a specified date. Add 2 days and 1 business day with the specified date.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://198.211.115.131/python-exercises/pandas/time-series/pandas-time-series-exercise-24.php