Validating date formats in a Pandas DataFrame
Pandas: Data Validation Exercise-9 with Solution
Write a Pandas program to validate date formats in a DataFrame.
The following exercise demonstrates how to validate that a column contains correctly formatted date values using to_datetime().
Sample Solution :
Code :
import pandas as pd
# Create a sample DataFrame with date strings
df = pd.DataFrame({
'Event': ['Conference', 'Meeting', 'Seminar'],
'Date': ['2020-05-01', '2020-06-15', 'Invalid-Date']
})
# Validate the 'Date' column by converting it to datetime
df['Valid_Date'] = pd.to_datetime(df['Date'], errors='coerce')
# Output the result
print(df)
Output:
Event Date Valid_Date 0 Conference 2020-05-01 2020-05-01 1 Meeting 2020-06-15 2020-06-15 2 Seminar Invalid-Date NaT
Explanation:
- Created a DataFrame with date strings, including an invalid date.
- Used to_datetime() to validate the 'Date' column, converting invalid dates to NaT.
- Displayed the DataFrame with a new 'Valid_Date' column that contains validated dates.
Python-Pandas Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/pandas/validate-date-formats-in-a-dataframe-using-pandas.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics