Applying NumPy function to DataFrame column in Python
Python Pandas Numpy: Exercise-10 with Solution
Apply a NumPy function to a Pandas DataFrame column.
Sample Solution:
Python Code:
import pandas as pd
import numpy as np
# Create a sample DataFrame
data = {'Name': ['Teodosija', 'Sutton', 'Taneli', 'David', 'Ross'],
'Age': [25, 30, 22, 35, 28],
'Salary': [50000, 60000, 45000, 70000, 55000]}
df = pd.DataFrame(data)
# Define a NumPy function (e.g., np.sqrt) to apply to the 'Salary' column
df['Sqrt_Salary'] = np.sqrt(df['Salary'])
# Display the DataFrame with the new column
print(df)
Output:
Name Age Salary Sqrt_Salary 0 Teodosija 25 50000 223.606798 1 Sutton 30 60000 244.948974 2 Taneli 22 45000 212.132034 3 David 35 70000 264.575131 4 Ross 28 55000 234.520788
Explanation:
In the exerciser above -
- First we create a sample DataFrame (df) with columns 'Name', 'Age', and 'Salary'.
- Next we use the NumPy function np.sqrt() to calculate the square root of each element in the 'Salary' column.
- The result is assigned to a new column 'Sqrt_Salary'.
- The updated DataFrame is then printed to the console.
Flowchart:
Python Code Editor:
Previous: Performing element-wise addition in Pandas DataFrame with NumPy array.
Next: Calculating correlation matrix for DataFrame in Python.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/pandas_numpy/pandas_numpy-exercise-10.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics