Creating Histogram with NumPy and Matplotlib in Python
Python Pandas Numpy: Exercise-16 with Solution
Create a histogram of a numerical column using NumPy and Matplotlib.
Sample Solution:
Python Code:
import numpy as np
import matplotlib.pyplot as plt
# Create a sample numerical column
data = np.random.randn(1000) # Generating random data for demonstration
# Create a histogram
hist, edges = np.histogram(data, bins=10)
# Plot the histogram using Matplotlib
plt.hist(data, bins=edges, edgecolor='black', alpha=0.7)
plt.title('Histogram of a Numerical Column')
plt.xlabel('Values')
plt.ylabel('Frequency')
plt.show()
Output:
Explanation:
In the exerciser above,
- First we create a sample numerical column (data) with random data using numpy.random.randn(1000).
- The numpy.histogram function is used to calculate the histogram. It returns two arrays: hist (the values of the histogram bins) and edges (the edges of the bins).
- We use Matplotlib (plt.hist()) to plot the histogram, specifying the data, bins, edge color, and other parameters.
- Finally, we add labels and a title to the plot and display it using plt.show().
Flowchart:
Python Code Editor:
Previous: Replacing missing values with column mean in Pandas DataFrame.
Next: Normalizing numerical column in Pandas DataFrame with Min-Max scaling.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/pandas_numpy/pandas_numpy-exercise-16.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics