Sorting Pandas DataFrame by values: Python data manipulation
Python Pandas Numpy: Exercise-28 with Solution
Sort a Pandas DataFrame by values in a specific column.
Sample Solution:
Python Code:
import pandas as pd
# Create a sample DataFrame
data = {'Name': ['Imen', 'Karthika', 'Cosimo', 'Cathrine'],
'Age': [25, 30, 22, 35],
'Salary': [50000, 60000, 45000, 70000]}
df = pd.DataFrame(data)
# Sort the DataFrame by the 'Salary' column in ascending order
sorted_df = df.sort_values(by='Salary')
# Display the sorted DataFrame
print(sorted_df)
Output:
Name Age Salary 2 Cosimo 22 45000 0 Imen 25 50000 1 Karthika 30 60000 3 Cathrine 35 70000
Explanation:
Here's a breakdown of the above code:
- We created a sample DataFrame (df) with columns 'Name', 'Age', and 'Salary'.
- The df.sort_values(by='Salary') method sorts the DataFrame based on the values in the 'Salary' column in ascending order.
- The resulting "sorted_df" DataFrame is displayed, showing the rows sorted by the 'Salary' column.
Flowchart:
Python Code Editor:
Previous: Generating and identifying unique values in a NumPy array.
Next: Applying custom function to salary: Pandas DataFrame operation.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://198.211.115.131/python-exercises/pandas_numpy/pandas_numpy-exercise-28.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics