w3resource

Applying custom function to salary: Pandas DataFrame operation

Python Pandas Numpy: Exercise-29 with Solution

Apply a custom function to each element in a Pandas DataFrame.

Sample Solution:

Python Code:

import pandas as pd

# Create a sample DataFrame
data = {'Name': ['Imen', 'Karthika', 'Cosimo', 'Cathrine'],
        'Age': [25, 30, 22, 35],
        'Salary': [50000, 60000, 45000, 70000]}

df = pd.DataFrame(data)

# Define a custom function
def double_salary(salary):
    return salary * 2

# Apply the custom function to the 'Salary' column
df['Double_Salary'] = df['Salary'].apply(double_salary)

# Display the DataFrame with the new column
print(df)

Output:

       Name  Age  Salary  Double_Salary
0      Imen   25   50000         100000
1  Karthika   30   60000         120000
2    Cosimo   22   45000          90000
3  Cathrine   35   70000         140000

Explanation:

Here's a breakdown of the above code:

  • First we create a sample DataFrame (df) with columns 'Name', 'Age', and 'Salary'.
  • Next we define a custom function "double_salary" that doubles the input value.
  • The df['Salary'].apply(double_salary) line applies the custom function to each element in the 'Salary' column.
  • The result is stored in a new column 'Double_Salary', which is added to the DataFrame.
  • The DataFrame with the new column is printed.

Flowchart:

Flowchart: Applying custom function to salary: Pandas DataFrame operation.

Python Code Editor:

Previous: Sorting Pandas DataFrame by values: Python data manipulation.
Next: Renaming columns in Pandas DataFrame.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://198.211.115.131/python-exercises/pandas_numpy/pandas_numpy-exercise-29.php