w3resource

Applying custom function to salary: Pandas DataFrame operation


Apply a custom function to each element in a Pandas DataFrame.

Sample Solution:

Python Code:

import pandas as pd

# Create a sample DataFrame
data = {'Name': ['Imen', 'Karthika', 'Cosimo', 'Cathrine'],
        'Age': [25, 30, 22, 35],
        'Salary': [50000, 60000, 45000, 70000]}

df = pd.DataFrame(data)

# Define a custom function
def double_salary(salary):
    return salary * 2

# Apply the custom function to the 'Salary' column
df['Double_Salary'] = df['Salary'].apply(double_salary)

# Display the DataFrame with the new column
print(df)

Output:

       Name  Age  Salary  Double_Salary
0      Imen   25   50000         100000
1  Karthika   30   60000         120000
2    Cosimo   22   45000          90000
3  Cathrine   35   70000         140000

Explanation:

Here's a breakdown of the above code:

  • First we create a sample DataFrame (df) with columns 'Name', 'Age', and 'Salary'.
  • Next we define a custom function "double_salary" that doubles the input value.
  • The df['Salary'].apply(double_salary) line applies the custom function to each element in the 'Salary' column.
  • The result is stored in a new column 'Double_Salary', which is added to the DataFrame.
  • The DataFrame with the new column is printed.

Flowchart:

Flowchart: Applying custom function to salary: Pandas DataFrame operation.

Python Code Editor:

Previous: Sorting Pandas DataFrame by values: Python data manipulation.
Next: Renaming columns in Pandas DataFrame.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.