w3resource

Selecting rows based on multiple conditions in Pandas DataFrame


Select rows from a DataFrame based on multiple conditions.

Sample Solution:

Python Code:

import pandas as pd

# Create a sample DataFrame
data = {'Name': ['Teodosija', 'Sutton', 'Taneli', 'Ravshan', 'Ross'],
        'Age': [26, 32, 25, 31, 28],
        'Salary': [50000, 60000, 45000, 70000, 55000]}

df = pd.DataFrame(data)

# Select rows based on multiple conditions
selected_rows = df[(df['Age'] > 25) & (df['Salary'] > 50000)]

# Display the selected rows
print(selected_rows)

Output:

      Name  Age  Salary
1   Sutton   32   60000
3  Ravshan   31   70000
4     Ross   28   55000

Explanation:

  • Importing Pandas:
    import pandas as pd
    Imports the Pandas library and aliases it as "pd" for convenience.
  • Creating a Sample DataFrame:
    data = {'Name': ['Teodosija', 'Sutton', 'Taneli', 'Ravshan', 'Ross'], 'Age': [26, 32, 25, 31, 28], 'Salary': [50000, 60000, 45000, 70000, 55000]} df = pd.DataFrame(data)
    Creates a sample DataFrame (df) with columns 'Name', 'Age', and 'Salary'.
  • Selecting Rows Based on Multiple Conditions:
    selected_rows = df[(df['Age'] > 25) & (df['Salary'] > 50000)]
    Uses boolean indexing to select rows where both conditions are true: age is greater than 25 and salary is greater than 50000.
  • Displaying the Selected Rows:
    print(selected_rows)
    Prints the selected rows to the console.

Flowchart:

Flowchart: Selecting rows based on multiple conditions in Pandas DataFrame.

Python Code Editor:

Previous: Generating a Pandas DataFrame from a NumPy array with custom column names in Python.
Next: Selecting the first and last 7 rows in a Pandas DataFrame.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.