w3resource

Pandas Practice Set-1: Remove multiple rows at once from diamonds dataframe

Pandas Practice Set-1: Exercise-11 with Solution

Write a Pandas program to remove multiple rows at once (axis=0 refers to rows) from diamonds dataframe.

Sample Solution :

Python Code :

import pandas as pd
diamonds = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/diamonds.csv')
print("Original Dataframe:")
print(diamonds.head())
print("\nRemove multiple rows:")
diamonds.drop([2, 4, 5], axis=0, inplace=True)
print(diamonds.head())

Sample Output:

Original Dataframe:
   carat      cut color clarity  depth  table  price     x     y     z
0   0.23    Ideal     E     SI2   61.5   55.0    326  3.95  3.98  2.43
1   0.21  Premium     E     SI1   59.8   61.0    326  3.89  3.84  2.31
2   0.23     Good     E     VS1   56.9   65.0    327  4.05  4.07  2.31
3   0.29  Premium     I     VS2   62.4   58.0    334  4.20  4.23  2.63
4   0.31     Good     J     SI2   63.3   58.0    335  4.34  4.35  2.75

Remove multiple rows:
   carat        cut color clarity  depth  table  price     x     y     z
0   0.23      Ideal     E     SI2   61.5   55.0    326  3.95  3.98  2.43
1   0.21    Premium     E     SI1   59.8   61.0    326  3.89  3.84  2.31
3   0.29    Premium     I     VS2   62.4   58.0    334  4.20  4.23  2.63
6   0.24  Very Good     I    VVS1   62.3   57.0    336  3.95  3.98  2.47
7   0.26  Very Good     H     SI1   61.9   55.0    337  4.07  4.11  2.53

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a pandas program to remove multiple columns at once of the diamonds Dataframe.
Next: Write a pandas program to sort the 'cut' Series in ascending order (returns a Series) of diamonds Dataframe.

What is the difficulty level of this exercise?



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://198.211.115.131/python-exercises/pandas/practice-set1/pandas-practice-set1-exercise-11.php